annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_4.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 15 FP additions, 16 FP multiplications,
Chris@10 32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
Chris@10 33 * 21 stack variables, 1 constants, and 8 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cfv.h"
Chris@10 36
Chris@10 37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 43 V T1, T2, Tb, T5, T6, T4, T9, T3, Tc, T7, Ta, Tg, T8, Td, Th;
Chris@10 44 V Tf, Te, Ti, Tj;
Chris@10 45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 47 Tb = LDW(&(W[0]));
Chris@10 48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 49 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 50 T4 = LDW(&(W[TWVL * 2]));
Chris@10 51 T9 = LDW(&(W[TWVL * 4]));
Chris@10 52 T3 = VFMACONJ(T2, T1);
Chris@10 53 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Chris@10 54 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@10 55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Chris@10 56 Tg = VADD(T3, T7);
Chris@10 57 T8 = VSUB(T3, T7);
Chris@10 58 Td = VSUB(Ta, Tc);
Chris@10 59 Th = VADD(Tc, Ta);
Chris@10 60 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
Chris@10 61 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
Chris@10 62 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
Chris@10 63 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
Chris@10 64 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
Chris@10 65 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
Chris@10 66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
Chris@10 67 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
Chris@10 68 }
Chris@10 69 }
Chris@10 70 VLEAVE();
Chris@10 71 }
Chris@10 72
Chris@10 73 static const tw_instr twinstr[] = {
Chris@10 74 VTW(1, 1),
Chris@10 75 VTW(1, 2),
Chris@10 76 VTW(1, 3),
Chris@10 77 {TW_NEXT, VL, 0}
Chris@10 78 };
Chris@10 79
Chris@10 80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
Chris@10 81
Chris@10 82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@10 83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@10 84 }
Chris@10 85 #else /* HAVE_FMA */
Chris@10 86
Chris@10 87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
Chris@10 88
Chris@10 89 /*
Chris@10 90 * This function contains 15 FP additions, 10 FP multiplications,
Chris@10 91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
Chris@10 92 * 23 stack variables, 1 constants, and 8 memory accesses
Chris@10 93 */
Chris@10 94 #include "hc2cfv.h"
Chris@10 95
Chris@10 96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 97 {
Chris@10 98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 99 {
Chris@10 100 INT m;
Chris@10 101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
Chris@10 103 V Ta, Tf, Tk, Tl, Ti, Tj;
Chris@10 104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 106 T3 = VCONJ(T2);
Chris@10 107 T4 = VADD(T1, T3);
Chris@10 108 Tb = LDW(&(W[0]));
Chris@10 109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
Chris@10 110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 112 T8 = VCONJ(T7);
Chris@10 113 T5 = LDW(&(W[TWVL * 2]));
Chris@10 114 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@10 115 Td = LDW(&(W[TWVL * 4]));
Chris@10 116 Te = VZMULIJ(Td, VSUB(T8, T6));
Chris@10 117 Ta = VSUB(T4, T9);
Chris@10 118 Tf = VBYI(VSUB(Tc, Te));
Chris@10 119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
Chris@10 120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
Chris@10 121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
Chris@10 122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
Chris@10 123 Ti = VADD(T4, T9);
Chris@10 124 Tj = VADD(Tc, Te);
Chris@10 125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
Chris@10 126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
Chris@10 127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
Chris@10 128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
Chris@10 129 }
Chris@10 130 }
Chris@10 131 VLEAVE();
Chris@10 132 }
Chris@10 133
Chris@10 134 static const tw_instr twinstr[] = {
Chris@10 135 VTW(1, 1),
Chris@10 136 VTW(1, 2),
Chris@10 137 VTW(1, 3),
Chris@10 138 {TW_NEXT, VL, 0}
Chris@10 139 };
Chris@10 140
Chris@10 141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
Chris@10 142
Chris@10 143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@10 144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@10 145 }
Chris@10 146 #endif /* HAVE_FMA */