Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 15 FP additions, 16 FP multiplications,
|
Chris@10
|
32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
|
Chris@10
|
33 * 21 stack variables, 1 constants, and 8 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cfv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
40 {
|
Chris@10
|
41 INT m;
|
Chris@10
|
42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
43 V T1, T2, Tb, T5, T6, T4, T9, T3, Tc, T7, Ta, Tg, T8, Td, Th;
|
Chris@10
|
44 V Tf, Te, Ti, Tj;
|
Chris@10
|
45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
47 Tb = LDW(&(W[0]));
|
Chris@10
|
48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
49 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
50 T4 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
51 T9 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
52 T3 = VFMACONJ(T2, T1);
|
Chris@10
|
53 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
|
Chris@10
|
54 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
|
Chris@10
|
55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
|
Chris@10
|
56 Tg = VADD(T3, T7);
|
Chris@10
|
57 T8 = VSUB(T3, T7);
|
Chris@10
|
58 Td = VSUB(Ta, Tc);
|
Chris@10
|
59 Th = VADD(Tc, Ta);
|
Chris@10
|
60 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
|
Chris@10
|
61 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
|
Chris@10
|
62 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
|
Chris@10
|
63 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
|
Chris@10
|
64 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
|
Chris@10
|
65 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
|
Chris@10
|
67 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
68 }
|
Chris@10
|
69 }
|
Chris@10
|
70 VLEAVE();
|
Chris@10
|
71 }
|
Chris@10
|
72
|
Chris@10
|
73 static const tw_instr twinstr[] = {
|
Chris@10
|
74 VTW(1, 1),
|
Chris@10
|
75 VTW(1, 2),
|
Chris@10
|
76 VTW(1, 3),
|
Chris@10
|
77 {TW_NEXT, VL, 0}
|
Chris@10
|
78 };
|
Chris@10
|
79
|
Chris@10
|
80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
|
Chris@10
|
81
|
Chris@10
|
82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
|
Chris@10
|
83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
|
Chris@10
|
84 }
|
Chris@10
|
85 #else /* HAVE_FMA */
|
Chris@10
|
86
|
Chris@10
|
87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
|
Chris@10
|
88
|
Chris@10
|
89 /*
|
Chris@10
|
90 * This function contains 15 FP additions, 10 FP multiplications,
|
Chris@10
|
91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
|
Chris@10
|
92 * 23 stack variables, 1 constants, and 8 memory accesses
|
Chris@10
|
93 */
|
Chris@10
|
94 #include "hc2cfv.h"
|
Chris@10
|
95
|
Chris@10
|
96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
97 {
|
Chris@10
|
98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
99 {
|
Chris@10
|
100 INT m;
|
Chris@10
|
101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
|
Chris@10
|
103 V Ta, Tf, Tk, Tl, Ti, Tj;
|
Chris@10
|
104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
106 T3 = VCONJ(T2);
|
Chris@10
|
107 T4 = VADD(T1, T3);
|
Chris@10
|
108 Tb = LDW(&(W[0]));
|
Chris@10
|
109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
|
Chris@10
|
110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
112 T8 = VCONJ(T7);
|
Chris@10
|
113 T5 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
114 T9 = VZMULJ(T5, VADD(T6, T8));
|
Chris@10
|
115 Td = LDW(&(W[TWVL * 4]));
|
Chris@10
|
116 Te = VZMULIJ(Td, VSUB(T8, T6));
|
Chris@10
|
117 Ta = VSUB(T4, T9);
|
Chris@10
|
118 Tf = VBYI(VSUB(Tc, Te));
|
Chris@10
|
119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
|
Chris@10
|
120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
|
Chris@10
|
121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
|
Chris@10
|
123 Ti = VADD(T4, T9);
|
Chris@10
|
124 Tj = VADD(Tc, Te);
|
Chris@10
|
125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
|
Chris@10
|
126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
|
Chris@10
|
127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
|
Chris@10
|
129 }
|
Chris@10
|
130 }
|
Chris@10
|
131 VLEAVE();
|
Chris@10
|
132 }
|
Chris@10
|
133
|
Chris@10
|
134 static const tw_instr twinstr[] = {
|
Chris@10
|
135 VTW(1, 1),
|
Chris@10
|
136 VTW(1, 2),
|
Chris@10
|
137 VTW(1, 3),
|
Chris@10
|
138 {TW_NEXT, VL, 0}
|
Chris@10
|
139 };
|
Chris@10
|
140
|
Chris@10
|
141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
|
Chris@10
|
142
|
Chris@10
|
143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
|
Chris@10
|
144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
|
Chris@10
|
145 }
|
Chris@10
|
146 #endif /* HAVE_FMA */
|