annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_16.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 103 FP additions, 96 FP multiplications,
Chris@10 32 * (or, 53 additions, 46 multiplications, 50 fused multiply/add),
Chris@10 33 * 92 stack variables, 4 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cfv.h"
Chris@10 36
Chris@10 37 static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@10 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 42 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
Chris@10 46 V T8, Tc, TQ, TZ, T1J, T1x, T12, TH, T1I, T1q, Tp, TJ, Te, Tf, Td;
Chris@10 47 V TN, Tj, Tk, Ti, TK, Tg, TO, Tl, TL, T1r, Th, TR, T1y, T1s, Tq;
Chris@10 48 V TM, T1z, T1N, T1t, T10, Tr, T13, TS, T1K, T1A, T1E, T1u, T1f, T11, T1c;
Chris@10 49 V Ts, T1d, T14, T1g, TT;
Chris@10 50 {
Chris@10 51 V T3, Tw, TF, TW, Tz, TA, Ty, TX, T7, Tu, T1, T2, Tv, TD, TE;
Chris@10 52 V TC, TV, T5, T6, T4, Tt, TB, TY, T1o, T1v, Tx, Ta, Tb, T9, TP;
Chris@10 53 V T1w, TG, T1p, Tn, To, Tm, TI;
Chris@10 54 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 55 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 56 Tv = LDW(&(W[0]));
Chris@10 57 TD = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 58 TE = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 59 TC = LDW(&(W[TWVL * 8]));
Chris@10 60 TV = LDW(&(W[TWVL * 6]));
Chris@10 61 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 62 T6 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 63 T3 = VFMACONJ(T2, T1);
Chris@10 64 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
Chris@10 65 T4 = LDW(&(W[TWVL * 14]));
Chris@10 66 Tt = LDW(&(W[TWVL * 16]));
Chris@10 67 TF = VZMULIJ(TC, VFNMSCONJ(TE, TD));
Chris@10 68 TW = VZMULJ(TV, VFMACONJ(TE, TD));
Chris@10 69 Tz = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
Chris@10 70 TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
Chris@10 71 Ty = LDW(&(W[TWVL * 24]));
Chris@10 72 TX = LDW(&(W[TWVL * 22]));
Chris@10 73 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@10 74 Tu = VZMULIJ(Tt, VFNMSCONJ(T6, T5));
Chris@10 75 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 76 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 77 T9 = LDW(&(W[TWVL * 2]));
Chris@10 78 TP = LDW(&(W[TWVL * 4]));
Chris@10 79 TB = VZMULIJ(Ty, VFNMSCONJ(TA, Tz));
Chris@10 80 TY = VZMULJ(TX, VFMACONJ(TA, Tz));
Chris@10 81 T1o = VADD(T3, T7);
Chris@10 82 T8 = VSUB(T3, T7);
Chris@10 83 T1v = VADD(Tw, Tu);
Chris@10 84 Tx = VSUB(Tu, Tw);
Chris@10 85 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
Chris@10 86 TQ = VZMULIJ(TP, VFNMSCONJ(Tb, Ta));
Chris@10 87 T1w = VADD(TF, TB);
Chris@10 88 TG = VSUB(TB, TF);
Chris@10 89 T1p = VADD(TW, TY);
Chris@10 90 TZ = VSUB(TW, TY);
Chris@10 91 Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 92 To = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 93 Tm = LDW(&(W[TWVL * 10]));
Chris@10 94 TI = LDW(&(W[TWVL * 12]));
Chris@10 95 T1J = VSUB(T1w, T1v);
Chris@10 96 T1x = VADD(T1v, T1w);
Chris@10 97 T12 = VFMA(LDK(KP414213562), Tx, TG);
Chris@10 98 TH = VFNMS(LDK(KP414213562), TG, Tx);
Chris@10 99 T1I = VSUB(T1o, T1p);
Chris@10 100 T1q = VADD(T1o, T1p);
Chris@10 101 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
Chris@10 102 TJ = VZMULIJ(TI, VFNMSCONJ(To, Tn));
Chris@10 103 Te = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 104 Tf = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 105 Td = LDW(&(W[TWVL * 18]));
Chris@10 106 TN = LDW(&(W[TWVL * 20]));
Chris@10 107 Tj = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 108 Tk = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 109 Ti = LDW(&(W[TWVL * 26]));
Chris@10 110 TK = LDW(&(W[TWVL * 28]));
Chris@10 111 }
Chris@10 112 Tg = VZMULJ(Td, VFMACONJ(Tf, Te));
Chris@10 113 TO = VZMULIJ(TN, VFNMSCONJ(Tf, Te));
Chris@10 114 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
Chris@10 115 TL = VZMULIJ(TK, VFNMSCONJ(Tk, Tj));
Chris@10 116 T1r = VADD(Tc, Tg);
Chris@10 117 Th = VSUB(Tc, Tg);
Chris@10 118 TR = VSUB(TO, TQ);
Chris@10 119 T1y = VADD(TQ, TO);
Chris@10 120 T1s = VADD(Tl, Tp);
Chris@10 121 Tq = VSUB(Tl, Tp);
Chris@10 122 TM = VSUB(TJ, TL);
Chris@10 123 T1z = VADD(TL, TJ);
Chris@10 124 T1N = VSUB(T1s, T1r);
Chris@10 125 T1t = VADD(T1r, T1s);
Chris@10 126 T10 = VSUB(Tq, Th);
Chris@10 127 Tr = VADD(Th, Tq);
Chris@10 128 T13 = VFNMS(LDK(KP414213562), TM, TR);
Chris@10 129 TS = VFMA(LDK(KP414213562), TR, TM);
Chris@10 130 T1K = VSUB(T1y, T1z);
Chris@10 131 T1A = VADD(T1y, T1z);
Chris@10 132 T1E = VADD(T1q, T1t);
Chris@10 133 T1u = VSUB(T1q, T1t);
Chris@10 134 T1f = VFMA(LDK(KP707106781), T10, TZ);
Chris@10 135 T11 = VFNMS(LDK(KP707106781), T10, TZ);
Chris@10 136 T1c = VFNMS(LDK(KP707106781), Tr, T8);
Chris@10 137 Ts = VFMA(LDK(KP707106781), Tr, T8);
Chris@10 138 T1d = VSUB(T12, T13);
Chris@10 139 T14 = VADD(T12, T13);
Chris@10 140 T1g = VSUB(TS, TH);
Chris@10 141 TT = VADD(TH, TS);
Chris@10 142 {
Chris@10 143 V T1O, T1L, T1F, T1B, T1k, T1e, T19, T15, T1l, T1h, T18, TU, T1T, T1P, T1S;
Chris@10 144 V T1M, T1H, T1G, T1D, T1C, T1m, T1n, T1j, T1i, T1a, T1b, T17, T16, T1U, T1V;
Chris@10 145 V T1R, T1Q;
Chris@10 146 T1O = VSUB(T1K, T1J);
Chris@10 147 T1L = VADD(T1J, T1K);
Chris@10 148 T1F = VADD(T1x, T1A);
Chris@10 149 T1B = VSUB(T1x, T1A);
Chris@10 150 T1k = VFNMS(LDK(KP923879532), T1d, T1c);
Chris@10 151 T1e = VFMA(LDK(KP923879532), T1d, T1c);
Chris@10 152 T19 = VFNMS(LDK(KP923879532), T14, T11);
Chris@10 153 T15 = VFMA(LDK(KP923879532), T14, T11);
Chris@10 154 T1l = VFNMS(LDK(KP923879532), T1g, T1f);
Chris@10 155 T1h = VFMA(LDK(KP923879532), T1g, T1f);
Chris@10 156 T18 = VFNMS(LDK(KP923879532), TT, Ts);
Chris@10 157 TU = VFMA(LDK(KP923879532), TT, Ts);
Chris@10 158 T1T = VFNMS(LDK(KP707106781), T1O, T1N);
Chris@10 159 T1P = VFMA(LDK(KP707106781), T1O, T1N);
Chris@10 160 T1S = VFNMS(LDK(KP707106781), T1L, T1I);
Chris@10 161 T1M = VFMA(LDK(KP707106781), T1L, T1I);
Chris@10 162 T1H = VCONJ(VMUL(LDK(KP500000000), VADD(T1F, T1E)));
Chris@10 163 T1G = VMUL(LDK(KP500000000), VSUB(T1E, T1F));
Chris@10 164 T1D = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1B, T1u)));
Chris@10 165 T1C = VMUL(LDK(KP500000000), VFMAI(T1B, T1u));
Chris@10 166 T1m = VMUL(LDK(KP500000000), VFNMSI(T1l, T1k));
Chris@10 167 T1n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1l, T1k)));
Chris@10 168 T1j = VMUL(LDK(KP500000000), VFMAI(T1h, T1e));
Chris@10 169 T1i = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1h, T1e)));
Chris@10 170 T1a = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T19, T18)));
Chris@10 171 T1b = VMUL(LDK(KP500000000), VFMAI(T19, T18));
Chris@10 172 T17 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T15, TU)));
Chris@10 173 T16 = VMUL(LDK(KP500000000), VFNMSI(T15, TU));
Chris@10 174 T1U = VMUL(LDK(KP500000000), VFNMSI(T1T, T1S));
Chris@10 175 T1V = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1T, T1S)));
Chris@10 176 T1R = VMUL(LDK(KP500000000), VFMAI(T1P, T1M));
Chris@10 177 T1Q = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1P, T1M)));
Chris@10 178 ST(&(Rm[WS(rs, 7)]), T1H, -ms, &(Rm[WS(rs, 1)]));
Chris@10 179 ST(&(Rp[0]), T1G, ms, &(Rp[0]));
Chris@10 180 ST(&(Rm[WS(rs, 3)]), T1D, -ms, &(Rm[WS(rs, 1)]));
Chris@10 181 ST(&(Rp[WS(rs, 4)]), T1C, ms, &(Rp[0]));
Chris@10 182 ST(&(Rp[WS(rs, 5)]), T1m, ms, &(Rp[WS(rs, 1)]));
Chris@10 183 ST(&(Rm[WS(rs, 4)]), T1n, -ms, &(Rm[0]));
Chris@10 184 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
Chris@10 185 ST(&(Rm[WS(rs, 2)]), T1i, -ms, &(Rm[0]));
Chris@10 186 ST(&(Rm[WS(rs, 6)]), T1a, -ms, &(Rm[0]));
Chris@10 187 ST(&(Rp[WS(rs, 7)]), T1b, ms, &(Rp[WS(rs, 1)]));
Chris@10 188 ST(&(Rm[0]), T17, -ms, &(Rm[0]));
Chris@10 189 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
Chris@10 190 ST(&(Rp[WS(rs, 6)]), T1U, ms, &(Rp[0]));
Chris@10 191 ST(&(Rm[WS(rs, 5)]), T1V, -ms, &(Rm[WS(rs, 1)]));
Chris@10 192 ST(&(Rp[WS(rs, 2)]), T1R, ms, &(Rp[0]));
Chris@10 193 ST(&(Rm[WS(rs, 1)]), T1Q, -ms, &(Rm[WS(rs, 1)]));
Chris@10 194 }
Chris@10 195 }
Chris@10 196 }
Chris@10 197 VLEAVE();
Chris@10 198 }
Chris@10 199
Chris@10 200 static const tw_instr twinstr[] = {
Chris@10 201 VTW(1, 1),
Chris@10 202 VTW(1, 2),
Chris@10 203 VTW(1, 3),
Chris@10 204 VTW(1, 4),
Chris@10 205 VTW(1, 5),
Chris@10 206 VTW(1, 6),
Chris@10 207 VTW(1, 7),
Chris@10 208 VTW(1, 8),
Chris@10 209 VTW(1, 9),
Chris@10 210 VTW(1, 10),
Chris@10 211 VTW(1, 11),
Chris@10 212 VTW(1, 12),
Chris@10 213 VTW(1, 13),
Chris@10 214 VTW(1, 14),
Chris@10 215 VTW(1, 15),
Chris@10 216 {TW_NEXT, VL, 0}
Chris@10 217 };
Chris@10 218
Chris@10 219 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {53, 46, 50, 0} };
Chris@10 220
Chris@10 221 void XSIMD(codelet_hc2cfdftv_16) (planner *p) {
Chris@10 222 X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT);
Chris@10 223 }
Chris@10 224 #else /* HAVE_FMA */
Chris@10 225
Chris@10 226 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */
Chris@10 227
Chris@10 228 /*
Chris@10 229 * This function contains 103 FP additions, 56 FP multiplications,
Chris@10 230 * (or, 99 additions, 52 multiplications, 4 fused multiply/add),
Chris@10 231 * 101 stack variables, 5 constants, and 32 memory accesses
Chris@10 232 */
Chris@10 233 #include "hc2cfv.h"
Chris@10 234
Chris@10 235 static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 236 {
Chris@10 237 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 238 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@10 239 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 240 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
Chris@10 241 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@10 242 {
Chris@10 243 INT m;
Chris@10 244 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
Chris@10 245 V T1D, T1E, T1R, TP, T1b, Ta, T1w, T18, T1x, T1z, T1A, T1G, T1H, T1S, Tx;
Chris@10 246 V T13, T10, T1a, T1, T3, TA, TM, TL, TN, T6, T8, TC, TH, TG, TI;
Chris@10 247 V T2, Tz, TK, TJ, T7, TB, TF, TE, TD, TO, T4, T9, T5, T15, T17;
Chris@10 248 V T14, T16;
Chris@10 249 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 250 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 251 T3 = VCONJ(T2);
Chris@10 252 Tz = LDW(&(W[0]));
Chris@10 253 TA = VZMULIJ(Tz, VSUB(T3, T1));
Chris@10 254 TM = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
Chris@10 255 TK = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
Chris@10 256 TL = VCONJ(TK);
Chris@10 257 TJ = LDW(&(W[TWVL * 24]));
Chris@10 258 TN = VZMULIJ(TJ, VSUB(TL, TM));
Chris@10 259 T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 260 T7 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 261 T8 = VCONJ(T7);
Chris@10 262 TB = LDW(&(W[TWVL * 16]));
Chris@10 263 TC = VZMULIJ(TB, VSUB(T8, T6));
Chris@10 264 TH = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 265 TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 266 TG = VCONJ(TF);
Chris@10 267 TE = LDW(&(W[TWVL * 8]));
Chris@10 268 TI = VZMULIJ(TE, VSUB(TG, TH));
Chris@10 269 T1D = VADD(TA, TC);
Chris@10 270 T1E = VADD(TI, TN);
Chris@10 271 T1R = VSUB(T1D, T1E);
Chris@10 272 TD = VSUB(TA, TC);
Chris@10 273 TO = VSUB(TI, TN);
Chris@10 274 TP = VFNMS(LDK(KP382683432), TO, VMUL(LDK(KP923879532), TD));
Chris@10 275 T1b = VFMA(LDK(KP382683432), TD, VMUL(LDK(KP923879532), TO));
Chris@10 276 T4 = VADD(T1, T3);
Chris@10 277 T5 = LDW(&(W[TWVL * 14]));
Chris@10 278 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@10 279 Ta = VMUL(LDK(KP500000000), VSUB(T4, T9));
Chris@10 280 T1w = VADD(T4, T9);
Chris@10 281 T14 = LDW(&(W[TWVL * 6]));
Chris@10 282 T15 = VZMULJ(T14, VADD(TH, TG));
Chris@10 283 T16 = LDW(&(W[TWVL * 22]));
Chris@10 284 T17 = VZMULJ(T16, VADD(TM, TL));
Chris@10 285 T18 = VSUB(T15, T17);
Chris@10 286 T1x = VADD(T15, T17);
Chris@10 287 {
Chris@10 288 V Tf, TR, Tv, TY, Tk, TT, Tq, TW, Tc, Te, Td, Tb, TQ, Ts, Tu;
Chris@10 289 V Tt, Tr, TX, Th, Tj, Ti, Tg, TS, Tn, Tp, To, Tm, TV, Tl, Tw;
Chris@10 290 V TU, TZ;
Chris@10 291 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 292 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 293 Te = VCONJ(Td);
Chris@10 294 Tb = LDW(&(W[TWVL * 2]));
Chris@10 295 Tf = VZMULJ(Tb, VADD(Tc, Te));
Chris@10 296 TQ = LDW(&(W[TWVL * 4]));
Chris@10 297 TR = VZMULIJ(TQ, VSUB(Te, Tc));
Chris@10 298 Ts = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 299 Tt = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 300 Tu = VCONJ(Tt);
Chris@10 301 Tr = LDW(&(W[TWVL * 10]));
Chris@10 302 Tv = VZMULJ(Tr, VADD(Ts, Tu));
Chris@10 303 TX = LDW(&(W[TWVL * 12]));
Chris@10 304 TY = VZMULIJ(TX, VSUB(Tu, Ts));
Chris@10 305 Th = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 306 Ti = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 307 Tj = VCONJ(Ti);
Chris@10 308 Tg = LDW(&(W[TWVL * 18]));
Chris@10 309 Tk = VZMULJ(Tg, VADD(Th, Tj));
Chris@10 310 TS = LDW(&(W[TWVL * 20]));
Chris@10 311 TT = VZMULIJ(TS, VSUB(Tj, Th));
Chris@10 312 Tn = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 313 To = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 314 Tp = VCONJ(To);
Chris@10 315 Tm = LDW(&(W[TWVL * 26]));
Chris@10 316 Tq = VZMULJ(Tm, VADD(Tn, Tp));
Chris@10 317 TV = LDW(&(W[TWVL * 28]));
Chris@10 318 TW = VZMULIJ(TV, VSUB(Tp, Tn));
Chris@10 319 T1z = VADD(Tf, Tk);
Chris@10 320 T1A = VADD(Tq, Tv);
Chris@10 321 T1G = VADD(TR, TT);
Chris@10 322 T1H = VADD(TW, TY);
Chris@10 323 T1S = VSUB(T1H, T1G);
Chris@10 324 Tl = VSUB(Tf, Tk);
Chris@10 325 Tw = VSUB(Tq, Tv);
Chris@10 326 Tx = VMUL(LDK(KP353553390), VADD(Tl, Tw));
Chris@10 327 T13 = VMUL(LDK(KP707106781), VSUB(Tw, Tl));
Chris@10 328 TU = VSUB(TR, TT);
Chris@10 329 TZ = VSUB(TW, TY);
Chris@10 330 T10 = VFMA(LDK(KP382683432), TU, VMUL(LDK(KP923879532), TZ));
Chris@10 331 T1a = VFNMS(LDK(KP923879532), TU, VMUL(LDK(KP382683432), TZ));
Chris@10 332 }
Chris@10 333 {
Chris@10 334 V T1U, T20, T1X, T21, T1Q, T1T, T1V, T1W, T1Y, T23, T1Z, T22, T1C, T1M, T1J;
Chris@10 335 V T1N, T1y, T1B, T1F, T1I, T1K, T1P, T1L, T1O, T12, T1g, T1d, T1h, Ty, T11;
Chris@10 336 V T19, T1c, T1e, T1j, T1f, T1i, T1m, T1s, T1p, T1t, T1k, T1l, T1n, T1o, T1q;
Chris@10 337 V T1v, T1r, T1u;
Chris@10 338 T1Q = VMUL(LDK(KP500000000), VSUB(T1w, T1x));
Chris@10 339 T1T = VMUL(LDK(KP353553390), VADD(T1R, T1S));
Chris@10 340 T1U = VADD(T1Q, T1T);
Chris@10 341 T20 = VSUB(T1Q, T1T);
Chris@10 342 T1V = VSUB(T1A, T1z);
Chris@10 343 T1W = VMUL(LDK(KP707106781), VSUB(T1S, T1R));
Chris@10 344 T1X = VMUL(LDK(KP500000000), VBYI(VADD(T1V, T1W)));
Chris@10 345 T21 = VMUL(LDK(KP500000000), VBYI(VSUB(T1W, T1V)));
Chris@10 346 T1Y = VCONJ(VSUB(T1U, T1X));
Chris@10 347 ST(&(Rm[WS(rs, 1)]), T1Y, -ms, &(Rm[WS(rs, 1)]));
Chris@10 348 T23 = VADD(T20, T21);
Chris@10 349 ST(&(Rp[WS(rs, 6)]), T23, ms, &(Rp[0]));
Chris@10 350 T1Z = VADD(T1U, T1X);
Chris@10 351 ST(&(Rp[WS(rs, 2)]), T1Z, ms, &(Rp[0]));
Chris@10 352 T22 = VCONJ(VSUB(T20, T21));
Chris@10 353 ST(&(Rm[WS(rs, 5)]), T22, -ms, &(Rm[WS(rs, 1)]));
Chris@10 354 T1y = VADD(T1w, T1x);
Chris@10 355 T1B = VADD(T1z, T1A);
Chris@10 356 T1C = VADD(T1y, T1B);
Chris@10 357 T1M = VSUB(T1y, T1B);
Chris@10 358 T1F = VADD(T1D, T1E);
Chris@10 359 T1I = VADD(T1G, T1H);
Chris@10 360 T1J = VADD(T1F, T1I);
Chris@10 361 T1N = VBYI(VSUB(T1I, T1F));
Chris@10 362 T1K = VCONJ(VMUL(LDK(KP500000000), VSUB(T1C, T1J)));
Chris@10 363 ST(&(Rm[WS(rs, 7)]), T1K, -ms, &(Rm[WS(rs, 1)]));
Chris@10 364 T1P = VMUL(LDK(KP500000000), VADD(T1M, T1N));
Chris@10 365 ST(&(Rp[WS(rs, 4)]), T1P, ms, &(Rp[0]));
Chris@10 366 T1L = VMUL(LDK(KP500000000), VADD(T1C, T1J));
Chris@10 367 ST(&(Rp[0]), T1L, ms, &(Rp[0]));
Chris@10 368 T1O = VCONJ(VMUL(LDK(KP500000000), VSUB(T1M, T1N)));
Chris@10 369 ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)]));
Chris@10 370 Ty = VADD(Ta, Tx);
Chris@10 371 T11 = VMUL(LDK(KP500000000), VADD(TP, T10));
Chris@10 372 T12 = VADD(Ty, T11);
Chris@10 373 T1g = VSUB(Ty, T11);
Chris@10 374 T19 = VSUB(T13, T18);
Chris@10 375 T1c = VSUB(T1a, T1b);
Chris@10 376 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T19, T1c)));
Chris@10 377 T1h = VMUL(LDK(KP500000000), VBYI(VSUB(T1c, T19)));
Chris@10 378 T1e = VCONJ(VSUB(T12, T1d));
Chris@10 379 ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
Chris@10 380 T1j = VADD(T1g, T1h);
Chris@10 381 ST(&(Rp[WS(rs, 7)]), T1j, ms, &(Rp[WS(rs, 1)]));
Chris@10 382 T1f = VADD(T12, T1d);
Chris@10 383 ST(&(Rp[WS(rs, 1)]), T1f, ms, &(Rp[WS(rs, 1)]));
Chris@10 384 T1i = VCONJ(VSUB(T1g, T1h));
Chris@10 385 ST(&(Rm[WS(rs, 6)]), T1i, -ms, &(Rm[0]));
Chris@10 386 T1k = VSUB(T10, TP);
Chris@10 387 T1l = VADD(T18, T13);
Chris@10 388 T1m = VMUL(LDK(KP500000000), VBYI(VSUB(T1k, T1l)));
Chris@10 389 T1s = VMUL(LDK(KP500000000), VBYI(VADD(T1l, T1k)));
Chris@10 390 T1n = VSUB(Ta, Tx);
Chris@10 391 T1o = VMUL(LDK(KP500000000), VADD(T1b, T1a));
Chris@10 392 T1p = VSUB(T1n, T1o);
Chris@10 393 T1t = VADD(T1n, T1o);
Chris@10 394 T1q = VADD(T1m, T1p);
Chris@10 395 ST(&(Rp[WS(rs, 5)]), T1q, ms, &(Rp[WS(rs, 1)]));
Chris@10 396 T1v = VCONJ(VSUB(T1t, T1s));
Chris@10 397 ST(&(Rm[WS(rs, 2)]), T1v, -ms, &(Rm[0]));
Chris@10 398 T1r = VCONJ(VSUB(T1p, T1m));
Chris@10 399 ST(&(Rm[WS(rs, 4)]), T1r, -ms, &(Rm[0]));
Chris@10 400 T1u = VADD(T1s, T1t);
Chris@10 401 ST(&(Rp[WS(rs, 3)]), T1u, ms, &(Rp[WS(rs, 1)]));
Chris@10 402 }
Chris@10 403 }
Chris@10 404 }
Chris@10 405 VLEAVE();
Chris@10 406 }
Chris@10 407
Chris@10 408 static const tw_instr twinstr[] = {
Chris@10 409 VTW(1, 1),
Chris@10 410 VTW(1, 2),
Chris@10 411 VTW(1, 3),
Chris@10 412 VTW(1, 4),
Chris@10 413 VTW(1, 5),
Chris@10 414 VTW(1, 6),
Chris@10 415 VTW(1, 7),
Chris@10 416 VTW(1, 8),
Chris@10 417 VTW(1, 9),
Chris@10 418 VTW(1, 10),
Chris@10 419 VTW(1, 11),
Chris@10 420 VTW(1, 12),
Chris@10 421 VTW(1, 13),
Chris@10 422 VTW(1, 14),
Chris@10 423 VTW(1, 15),
Chris@10 424 {TW_NEXT, VL, 0}
Chris@10 425 };
Chris@10 426
Chris@10 427 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {99, 52, 4, 0} };
Chris@10 428
Chris@10 429 void XSIMD(codelet_hc2cfdftv_16) (planner *p) {
Chris@10 430 X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT);
Chris@10 431 }
Chris@10 432 #endif /* HAVE_FMA */