Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 103 FP additions, 96 FP multiplications,
|
Chris@10
|
32 * (or, 53 additions, 46 multiplications, 50 fused multiply/add),
|
Chris@10
|
33 * 92 stack variables, 4 constants, and 32 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cfv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
40 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@10
|
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
42 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
|
Chris@10
|
46 V T8, Tc, TQ, TZ, T1J, T1x, T12, TH, T1I, T1q, Tp, TJ, Te, Tf, Td;
|
Chris@10
|
47 V TN, Tj, Tk, Ti, TK, Tg, TO, Tl, TL, T1r, Th, TR, T1y, T1s, Tq;
|
Chris@10
|
48 V TM, T1z, T1N, T1t, T10, Tr, T13, TS, T1K, T1A, T1E, T1u, T1f, T11, T1c;
|
Chris@10
|
49 V Ts, T1d, T14, T1g, TT;
|
Chris@10
|
50 {
|
Chris@10
|
51 V T3, Tw, TF, TW, Tz, TA, Ty, TX, T7, Tu, T1, T2, Tv, TD, TE;
|
Chris@10
|
52 V TC, TV, T5, T6, T4, Tt, TB, TY, T1o, T1v, Tx, Ta, Tb, T9, TP;
|
Chris@10
|
53 V T1w, TG, T1p, Tn, To, Tm, TI;
|
Chris@10
|
54 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
55 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
56 Tv = LDW(&(W[0]));
|
Chris@10
|
57 TD = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
58 TE = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
59 TC = LDW(&(W[TWVL * 8]));
|
Chris@10
|
60 TV = LDW(&(W[TWVL * 6]));
|
Chris@10
|
61 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
62 T6 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
63 T3 = VFMACONJ(T2, T1);
|
Chris@10
|
64 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
|
Chris@10
|
65 T4 = LDW(&(W[TWVL * 14]));
|
Chris@10
|
66 Tt = LDW(&(W[TWVL * 16]));
|
Chris@10
|
67 TF = VZMULIJ(TC, VFNMSCONJ(TE, TD));
|
Chris@10
|
68 TW = VZMULJ(TV, VFMACONJ(TE, TD));
|
Chris@10
|
69 Tz = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
|
Chris@10
|
70 TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
|
Chris@10
|
71 Ty = LDW(&(W[TWVL * 24]));
|
Chris@10
|
72 TX = LDW(&(W[TWVL * 22]));
|
Chris@10
|
73 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
|
Chris@10
|
74 Tu = VZMULIJ(Tt, VFNMSCONJ(T6, T5));
|
Chris@10
|
75 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
76 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
77 T9 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
78 TP = LDW(&(W[TWVL * 4]));
|
Chris@10
|
79 TB = VZMULIJ(Ty, VFNMSCONJ(TA, Tz));
|
Chris@10
|
80 TY = VZMULJ(TX, VFMACONJ(TA, Tz));
|
Chris@10
|
81 T1o = VADD(T3, T7);
|
Chris@10
|
82 T8 = VSUB(T3, T7);
|
Chris@10
|
83 T1v = VADD(Tw, Tu);
|
Chris@10
|
84 Tx = VSUB(Tu, Tw);
|
Chris@10
|
85 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
|
Chris@10
|
86 TQ = VZMULIJ(TP, VFNMSCONJ(Tb, Ta));
|
Chris@10
|
87 T1w = VADD(TF, TB);
|
Chris@10
|
88 TG = VSUB(TB, TF);
|
Chris@10
|
89 T1p = VADD(TW, TY);
|
Chris@10
|
90 TZ = VSUB(TW, TY);
|
Chris@10
|
91 Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
92 To = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
93 Tm = LDW(&(W[TWVL * 10]));
|
Chris@10
|
94 TI = LDW(&(W[TWVL * 12]));
|
Chris@10
|
95 T1J = VSUB(T1w, T1v);
|
Chris@10
|
96 T1x = VADD(T1v, T1w);
|
Chris@10
|
97 T12 = VFMA(LDK(KP414213562), Tx, TG);
|
Chris@10
|
98 TH = VFNMS(LDK(KP414213562), TG, Tx);
|
Chris@10
|
99 T1I = VSUB(T1o, T1p);
|
Chris@10
|
100 T1q = VADD(T1o, T1p);
|
Chris@10
|
101 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
|
Chris@10
|
102 TJ = VZMULIJ(TI, VFNMSCONJ(To, Tn));
|
Chris@10
|
103 Te = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
104 Tf = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
105 Td = LDW(&(W[TWVL * 18]));
|
Chris@10
|
106 TN = LDW(&(W[TWVL * 20]));
|
Chris@10
|
107 Tj = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
108 Tk = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
109 Ti = LDW(&(W[TWVL * 26]));
|
Chris@10
|
110 TK = LDW(&(W[TWVL * 28]));
|
Chris@10
|
111 }
|
Chris@10
|
112 Tg = VZMULJ(Td, VFMACONJ(Tf, Te));
|
Chris@10
|
113 TO = VZMULIJ(TN, VFNMSCONJ(Tf, Te));
|
Chris@10
|
114 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
|
Chris@10
|
115 TL = VZMULIJ(TK, VFNMSCONJ(Tk, Tj));
|
Chris@10
|
116 T1r = VADD(Tc, Tg);
|
Chris@10
|
117 Th = VSUB(Tc, Tg);
|
Chris@10
|
118 TR = VSUB(TO, TQ);
|
Chris@10
|
119 T1y = VADD(TQ, TO);
|
Chris@10
|
120 T1s = VADD(Tl, Tp);
|
Chris@10
|
121 Tq = VSUB(Tl, Tp);
|
Chris@10
|
122 TM = VSUB(TJ, TL);
|
Chris@10
|
123 T1z = VADD(TL, TJ);
|
Chris@10
|
124 T1N = VSUB(T1s, T1r);
|
Chris@10
|
125 T1t = VADD(T1r, T1s);
|
Chris@10
|
126 T10 = VSUB(Tq, Th);
|
Chris@10
|
127 Tr = VADD(Th, Tq);
|
Chris@10
|
128 T13 = VFNMS(LDK(KP414213562), TM, TR);
|
Chris@10
|
129 TS = VFMA(LDK(KP414213562), TR, TM);
|
Chris@10
|
130 T1K = VSUB(T1y, T1z);
|
Chris@10
|
131 T1A = VADD(T1y, T1z);
|
Chris@10
|
132 T1E = VADD(T1q, T1t);
|
Chris@10
|
133 T1u = VSUB(T1q, T1t);
|
Chris@10
|
134 T1f = VFMA(LDK(KP707106781), T10, TZ);
|
Chris@10
|
135 T11 = VFNMS(LDK(KP707106781), T10, TZ);
|
Chris@10
|
136 T1c = VFNMS(LDK(KP707106781), Tr, T8);
|
Chris@10
|
137 Ts = VFMA(LDK(KP707106781), Tr, T8);
|
Chris@10
|
138 T1d = VSUB(T12, T13);
|
Chris@10
|
139 T14 = VADD(T12, T13);
|
Chris@10
|
140 T1g = VSUB(TS, TH);
|
Chris@10
|
141 TT = VADD(TH, TS);
|
Chris@10
|
142 {
|
Chris@10
|
143 V T1O, T1L, T1F, T1B, T1k, T1e, T19, T15, T1l, T1h, T18, TU, T1T, T1P, T1S;
|
Chris@10
|
144 V T1M, T1H, T1G, T1D, T1C, T1m, T1n, T1j, T1i, T1a, T1b, T17, T16, T1U, T1V;
|
Chris@10
|
145 V T1R, T1Q;
|
Chris@10
|
146 T1O = VSUB(T1K, T1J);
|
Chris@10
|
147 T1L = VADD(T1J, T1K);
|
Chris@10
|
148 T1F = VADD(T1x, T1A);
|
Chris@10
|
149 T1B = VSUB(T1x, T1A);
|
Chris@10
|
150 T1k = VFNMS(LDK(KP923879532), T1d, T1c);
|
Chris@10
|
151 T1e = VFMA(LDK(KP923879532), T1d, T1c);
|
Chris@10
|
152 T19 = VFNMS(LDK(KP923879532), T14, T11);
|
Chris@10
|
153 T15 = VFMA(LDK(KP923879532), T14, T11);
|
Chris@10
|
154 T1l = VFNMS(LDK(KP923879532), T1g, T1f);
|
Chris@10
|
155 T1h = VFMA(LDK(KP923879532), T1g, T1f);
|
Chris@10
|
156 T18 = VFNMS(LDK(KP923879532), TT, Ts);
|
Chris@10
|
157 TU = VFMA(LDK(KP923879532), TT, Ts);
|
Chris@10
|
158 T1T = VFNMS(LDK(KP707106781), T1O, T1N);
|
Chris@10
|
159 T1P = VFMA(LDK(KP707106781), T1O, T1N);
|
Chris@10
|
160 T1S = VFNMS(LDK(KP707106781), T1L, T1I);
|
Chris@10
|
161 T1M = VFMA(LDK(KP707106781), T1L, T1I);
|
Chris@10
|
162 T1H = VCONJ(VMUL(LDK(KP500000000), VADD(T1F, T1E)));
|
Chris@10
|
163 T1G = VMUL(LDK(KP500000000), VSUB(T1E, T1F));
|
Chris@10
|
164 T1D = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1B, T1u)));
|
Chris@10
|
165 T1C = VMUL(LDK(KP500000000), VFMAI(T1B, T1u));
|
Chris@10
|
166 T1m = VMUL(LDK(KP500000000), VFNMSI(T1l, T1k));
|
Chris@10
|
167 T1n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1l, T1k)));
|
Chris@10
|
168 T1j = VMUL(LDK(KP500000000), VFMAI(T1h, T1e));
|
Chris@10
|
169 T1i = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1h, T1e)));
|
Chris@10
|
170 T1a = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T19, T18)));
|
Chris@10
|
171 T1b = VMUL(LDK(KP500000000), VFMAI(T19, T18));
|
Chris@10
|
172 T17 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T15, TU)));
|
Chris@10
|
173 T16 = VMUL(LDK(KP500000000), VFNMSI(T15, TU));
|
Chris@10
|
174 T1U = VMUL(LDK(KP500000000), VFNMSI(T1T, T1S));
|
Chris@10
|
175 T1V = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1T, T1S)));
|
Chris@10
|
176 T1R = VMUL(LDK(KP500000000), VFMAI(T1P, T1M));
|
Chris@10
|
177 T1Q = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1P, T1M)));
|
Chris@10
|
178 ST(&(Rm[WS(rs, 7)]), T1H, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
179 ST(&(Rp[0]), T1G, ms, &(Rp[0]));
|
Chris@10
|
180 ST(&(Rm[WS(rs, 3)]), T1D, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
181 ST(&(Rp[WS(rs, 4)]), T1C, ms, &(Rp[0]));
|
Chris@10
|
182 ST(&(Rp[WS(rs, 5)]), T1m, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
183 ST(&(Rm[WS(rs, 4)]), T1n, -ms, &(Rm[0]));
|
Chris@10
|
184 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
185 ST(&(Rm[WS(rs, 2)]), T1i, -ms, &(Rm[0]));
|
Chris@10
|
186 ST(&(Rm[WS(rs, 6)]), T1a, -ms, &(Rm[0]));
|
Chris@10
|
187 ST(&(Rp[WS(rs, 7)]), T1b, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
188 ST(&(Rm[0]), T17, -ms, &(Rm[0]));
|
Chris@10
|
189 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
190 ST(&(Rp[WS(rs, 6)]), T1U, ms, &(Rp[0]));
|
Chris@10
|
191 ST(&(Rm[WS(rs, 5)]), T1V, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
192 ST(&(Rp[WS(rs, 2)]), T1R, ms, &(Rp[0]));
|
Chris@10
|
193 ST(&(Rm[WS(rs, 1)]), T1Q, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
194 }
|
Chris@10
|
195 }
|
Chris@10
|
196 }
|
Chris@10
|
197 VLEAVE();
|
Chris@10
|
198 }
|
Chris@10
|
199
|
Chris@10
|
200 static const tw_instr twinstr[] = {
|
Chris@10
|
201 VTW(1, 1),
|
Chris@10
|
202 VTW(1, 2),
|
Chris@10
|
203 VTW(1, 3),
|
Chris@10
|
204 VTW(1, 4),
|
Chris@10
|
205 VTW(1, 5),
|
Chris@10
|
206 VTW(1, 6),
|
Chris@10
|
207 VTW(1, 7),
|
Chris@10
|
208 VTW(1, 8),
|
Chris@10
|
209 VTW(1, 9),
|
Chris@10
|
210 VTW(1, 10),
|
Chris@10
|
211 VTW(1, 11),
|
Chris@10
|
212 VTW(1, 12),
|
Chris@10
|
213 VTW(1, 13),
|
Chris@10
|
214 VTW(1, 14),
|
Chris@10
|
215 VTW(1, 15),
|
Chris@10
|
216 {TW_NEXT, VL, 0}
|
Chris@10
|
217 };
|
Chris@10
|
218
|
Chris@10
|
219 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {53, 46, 50, 0} };
|
Chris@10
|
220
|
Chris@10
|
221 void XSIMD(codelet_hc2cfdftv_16) (planner *p) {
|
Chris@10
|
222 X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT);
|
Chris@10
|
223 }
|
Chris@10
|
224 #else /* HAVE_FMA */
|
Chris@10
|
225
|
Chris@10
|
226 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include hc2cfv.h */
|
Chris@10
|
227
|
Chris@10
|
228 /*
|
Chris@10
|
229 * This function contains 103 FP additions, 56 FP multiplications,
|
Chris@10
|
230 * (or, 99 additions, 52 multiplications, 4 fused multiply/add),
|
Chris@10
|
231 * 101 stack variables, 5 constants, and 32 memory accesses
|
Chris@10
|
232 */
|
Chris@10
|
233 #include "hc2cfv.h"
|
Chris@10
|
234
|
Chris@10
|
235 static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
236 {
|
Chris@10
|
237 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
238 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
|
Chris@10
|
239 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
240 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
Chris@10
|
241 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@10
|
242 {
|
Chris@10
|
243 INT m;
|
Chris@10
|
244 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
|
Chris@10
|
245 V T1D, T1E, T1R, TP, T1b, Ta, T1w, T18, T1x, T1z, T1A, T1G, T1H, T1S, Tx;
|
Chris@10
|
246 V T13, T10, T1a, T1, T3, TA, TM, TL, TN, T6, T8, TC, TH, TG, TI;
|
Chris@10
|
247 V T2, Tz, TK, TJ, T7, TB, TF, TE, TD, TO, T4, T9, T5, T15, T17;
|
Chris@10
|
248 V T14, T16;
|
Chris@10
|
249 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
250 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
251 T3 = VCONJ(T2);
|
Chris@10
|
252 Tz = LDW(&(W[0]));
|
Chris@10
|
253 TA = VZMULIJ(Tz, VSUB(T3, T1));
|
Chris@10
|
254 TM = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
|
Chris@10
|
255 TK = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
|
Chris@10
|
256 TL = VCONJ(TK);
|
Chris@10
|
257 TJ = LDW(&(W[TWVL * 24]));
|
Chris@10
|
258 TN = VZMULIJ(TJ, VSUB(TL, TM));
|
Chris@10
|
259 T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
260 T7 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
261 T8 = VCONJ(T7);
|
Chris@10
|
262 TB = LDW(&(W[TWVL * 16]));
|
Chris@10
|
263 TC = VZMULIJ(TB, VSUB(T8, T6));
|
Chris@10
|
264 TH = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
265 TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
266 TG = VCONJ(TF);
|
Chris@10
|
267 TE = LDW(&(W[TWVL * 8]));
|
Chris@10
|
268 TI = VZMULIJ(TE, VSUB(TG, TH));
|
Chris@10
|
269 T1D = VADD(TA, TC);
|
Chris@10
|
270 T1E = VADD(TI, TN);
|
Chris@10
|
271 T1R = VSUB(T1D, T1E);
|
Chris@10
|
272 TD = VSUB(TA, TC);
|
Chris@10
|
273 TO = VSUB(TI, TN);
|
Chris@10
|
274 TP = VFNMS(LDK(KP382683432), TO, VMUL(LDK(KP923879532), TD));
|
Chris@10
|
275 T1b = VFMA(LDK(KP382683432), TD, VMUL(LDK(KP923879532), TO));
|
Chris@10
|
276 T4 = VADD(T1, T3);
|
Chris@10
|
277 T5 = LDW(&(W[TWVL * 14]));
|
Chris@10
|
278 T9 = VZMULJ(T5, VADD(T6, T8));
|
Chris@10
|
279 Ta = VMUL(LDK(KP500000000), VSUB(T4, T9));
|
Chris@10
|
280 T1w = VADD(T4, T9);
|
Chris@10
|
281 T14 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
282 T15 = VZMULJ(T14, VADD(TH, TG));
|
Chris@10
|
283 T16 = LDW(&(W[TWVL * 22]));
|
Chris@10
|
284 T17 = VZMULJ(T16, VADD(TM, TL));
|
Chris@10
|
285 T18 = VSUB(T15, T17);
|
Chris@10
|
286 T1x = VADD(T15, T17);
|
Chris@10
|
287 {
|
Chris@10
|
288 V Tf, TR, Tv, TY, Tk, TT, Tq, TW, Tc, Te, Td, Tb, TQ, Ts, Tu;
|
Chris@10
|
289 V Tt, Tr, TX, Th, Tj, Ti, Tg, TS, Tn, Tp, To, Tm, TV, Tl, Tw;
|
Chris@10
|
290 V TU, TZ;
|
Chris@10
|
291 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
292 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
293 Te = VCONJ(Td);
|
Chris@10
|
294 Tb = LDW(&(W[TWVL * 2]));
|
Chris@10
|
295 Tf = VZMULJ(Tb, VADD(Tc, Te));
|
Chris@10
|
296 TQ = LDW(&(W[TWVL * 4]));
|
Chris@10
|
297 TR = VZMULIJ(TQ, VSUB(Te, Tc));
|
Chris@10
|
298 Ts = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
299 Tt = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
300 Tu = VCONJ(Tt);
|
Chris@10
|
301 Tr = LDW(&(W[TWVL * 10]));
|
Chris@10
|
302 Tv = VZMULJ(Tr, VADD(Ts, Tu));
|
Chris@10
|
303 TX = LDW(&(W[TWVL * 12]));
|
Chris@10
|
304 TY = VZMULIJ(TX, VSUB(Tu, Ts));
|
Chris@10
|
305 Th = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
306 Ti = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
307 Tj = VCONJ(Ti);
|
Chris@10
|
308 Tg = LDW(&(W[TWVL * 18]));
|
Chris@10
|
309 Tk = VZMULJ(Tg, VADD(Th, Tj));
|
Chris@10
|
310 TS = LDW(&(W[TWVL * 20]));
|
Chris@10
|
311 TT = VZMULIJ(TS, VSUB(Tj, Th));
|
Chris@10
|
312 Tn = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
313 To = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
314 Tp = VCONJ(To);
|
Chris@10
|
315 Tm = LDW(&(W[TWVL * 26]));
|
Chris@10
|
316 Tq = VZMULJ(Tm, VADD(Tn, Tp));
|
Chris@10
|
317 TV = LDW(&(W[TWVL * 28]));
|
Chris@10
|
318 TW = VZMULIJ(TV, VSUB(Tp, Tn));
|
Chris@10
|
319 T1z = VADD(Tf, Tk);
|
Chris@10
|
320 T1A = VADD(Tq, Tv);
|
Chris@10
|
321 T1G = VADD(TR, TT);
|
Chris@10
|
322 T1H = VADD(TW, TY);
|
Chris@10
|
323 T1S = VSUB(T1H, T1G);
|
Chris@10
|
324 Tl = VSUB(Tf, Tk);
|
Chris@10
|
325 Tw = VSUB(Tq, Tv);
|
Chris@10
|
326 Tx = VMUL(LDK(KP353553390), VADD(Tl, Tw));
|
Chris@10
|
327 T13 = VMUL(LDK(KP707106781), VSUB(Tw, Tl));
|
Chris@10
|
328 TU = VSUB(TR, TT);
|
Chris@10
|
329 TZ = VSUB(TW, TY);
|
Chris@10
|
330 T10 = VFMA(LDK(KP382683432), TU, VMUL(LDK(KP923879532), TZ));
|
Chris@10
|
331 T1a = VFNMS(LDK(KP923879532), TU, VMUL(LDK(KP382683432), TZ));
|
Chris@10
|
332 }
|
Chris@10
|
333 {
|
Chris@10
|
334 V T1U, T20, T1X, T21, T1Q, T1T, T1V, T1W, T1Y, T23, T1Z, T22, T1C, T1M, T1J;
|
Chris@10
|
335 V T1N, T1y, T1B, T1F, T1I, T1K, T1P, T1L, T1O, T12, T1g, T1d, T1h, Ty, T11;
|
Chris@10
|
336 V T19, T1c, T1e, T1j, T1f, T1i, T1m, T1s, T1p, T1t, T1k, T1l, T1n, T1o, T1q;
|
Chris@10
|
337 V T1v, T1r, T1u;
|
Chris@10
|
338 T1Q = VMUL(LDK(KP500000000), VSUB(T1w, T1x));
|
Chris@10
|
339 T1T = VMUL(LDK(KP353553390), VADD(T1R, T1S));
|
Chris@10
|
340 T1U = VADD(T1Q, T1T);
|
Chris@10
|
341 T20 = VSUB(T1Q, T1T);
|
Chris@10
|
342 T1V = VSUB(T1A, T1z);
|
Chris@10
|
343 T1W = VMUL(LDK(KP707106781), VSUB(T1S, T1R));
|
Chris@10
|
344 T1X = VMUL(LDK(KP500000000), VBYI(VADD(T1V, T1W)));
|
Chris@10
|
345 T21 = VMUL(LDK(KP500000000), VBYI(VSUB(T1W, T1V)));
|
Chris@10
|
346 T1Y = VCONJ(VSUB(T1U, T1X));
|
Chris@10
|
347 ST(&(Rm[WS(rs, 1)]), T1Y, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
348 T23 = VADD(T20, T21);
|
Chris@10
|
349 ST(&(Rp[WS(rs, 6)]), T23, ms, &(Rp[0]));
|
Chris@10
|
350 T1Z = VADD(T1U, T1X);
|
Chris@10
|
351 ST(&(Rp[WS(rs, 2)]), T1Z, ms, &(Rp[0]));
|
Chris@10
|
352 T22 = VCONJ(VSUB(T20, T21));
|
Chris@10
|
353 ST(&(Rm[WS(rs, 5)]), T22, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
354 T1y = VADD(T1w, T1x);
|
Chris@10
|
355 T1B = VADD(T1z, T1A);
|
Chris@10
|
356 T1C = VADD(T1y, T1B);
|
Chris@10
|
357 T1M = VSUB(T1y, T1B);
|
Chris@10
|
358 T1F = VADD(T1D, T1E);
|
Chris@10
|
359 T1I = VADD(T1G, T1H);
|
Chris@10
|
360 T1J = VADD(T1F, T1I);
|
Chris@10
|
361 T1N = VBYI(VSUB(T1I, T1F));
|
Chris@10
|
362 T1K = VCONJ(VMUL(LDK(KP500000000), VSUB(T1C, T1J)));
|
Chris@10
|
363 ST(&(Rm[WS(rs, 7)]), T1K, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
364 T1P = VMUL(LDK(KP500000000), VADD(T1M, T1N));
|
Chris@10
|
365 ST(&(Rp[WS(rs, 4)]), T1P, ms, &(Rp[0]));
|
Chris@10
|
366 T1L = VMUL(LDK(KP500000000), VADD(T1C, T1J));
|
Chris@10
|
367 ST(&(Rp[0]), T1L, ms, &(Rp[0]));
|
Chris@10
|
368 T1O = VCONJ(VMUL(LDK(KP500000000), VSUB(T1M, T1N)));
|
Chris@10
|
369 ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
370 Ty = VADD(Ta, Tx);
|
Chris@10
|
371 T11 = VMUL(LDK(KP500000000), VADD(TP, T10));
|
Chris@10
|
372 T12 = VADD(Ty, T11);
|
Chris@10
|
373 T1g = VSUB(Ty, T11);
|
Chris@10
|
374 T19 = VSUB(T13, T18);
|
Chris@10
|
375 T1c = VSUB(T1a, T1b);
|
Chris@10
|
376 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T19, T1c)));
|
Chris@10
|
377 T1h = VMUL(LDK(KP500000000), VBYI(VSUB(T1c, T19)));
|
Chris@10
|
378 T1e = VCONJ(VSUB(T12, T1d));
|
Chris@10
|
379 ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
|
Chris@10
|
380 T1j = VADD(T1g, T1h);
|
Chris@10
|
381 ST(&(Rp[WS(rs, 7)]), T1j, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
382 T1f = VADD(T12, T1d);
|
Chris@10
|
383 ST(&(Rp[WS(rs, 1)]), T1f, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
384 T1i = VCONJ(VSUB(T1g, T1h));
|
Chris@10
|
385 ST(&(Rm[WS(rs, 6)]), T1i, -ms, &(Rm[0]));
|
Chris@10
|
386 T1k = VSUB(T10, TP);
|
Chris@10
|
387 T1l = VADD(T18, T13);
|
Chris@10
|
388 T1m = VMUL(LDK(KP500000000), VBYI(VSUB(T1k, T1l)));
|
Chris@10
|
389 T1s = VMUL(LDK(KP500000000), VBYI(VADD(T1l, T1k)));
|
Chris@10
|
390 T1n = VSUB(Ta, Tx);
|
Chris@10
|
391 T1o = VMUL(LDK(KP500000000), VADD(T1b, T1a));
|
Chris@10
|
392 T1p = VSUB(T1n, T1o);
|
Chris@10
|
393 T1t = VADD(T1n, T1o);
|
Chris@10
|
394 T1q = VADD(T1m, T1p);
|
Chris@10
|
395 ST(&(Rp[WS(rs, 5)]), T1q, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
396 T1v = VCONJ(VSUB(T1t, T1s));
|
Chris@10
|
397 ST(&(Rm[WS(rs, 2)]), T1v, -ms, &(Rm[0]));
|
Chris@10
|
398 T1r = VCONJ(VSUB(T1p, T1m));
|
Chris@10
|
399 ST(&(Rm[WS(rs, 4)]), T1r, -ms, &(Rm[0]));
|
Chris@10
|
400 T1u = VADD(T1s, T1t);
|
Chris@10
|
401 ST(&(Rp[WS(rs, 3)]), T1u, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
402 }
|
Chris@10
|
403 }
|
Chris@10
|
404 }
|
Chris@10
|
405 VLEAVE();
|
Chris@10
|
406 }
|
Chris@10
|
407
|
Chris@10
|
408 static const tw_instr twinstr[] = {
|
Chris@10
|
409 VTW(1, 1),
|
Chris@10
|
410 VTW(1, 2),
|
Chris@10
|
411 VTW(1, 3),
|
Chris@10
|
412 VTW(1, 4),
|
Chris@10
|
413 VTW(1, 5),
|
Chris@10
|
414 VTW(1, 6),
|
Chris@10
|
415 VTW(1, 7),
|
Chris@10
|
416 VTW(1, 8),
|
Chris@10
|
417 VTW(1, 9),
|
Chris@10
|
418 VTW(1, 10),
|
Chris@10
|
419 VTW(1, 11),
|
Chris@10
|
420 VTW(1, 12),
|
Chris@10
|
421 VTW(1, 13),
|
Chris@10
|
422 VTW(1, 14),
|
Chris@10
|
423 VTW(1, 15),
|
Chris@10
|
424 {TW_NEXT, VL, 0}
|
Chris@10
|
425 };
|
Chris@10
|
426
|
Chris@10
|
427 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {99, 52, 4, 0} };
|
Chris@10
|
428
|
Chris@10
|
429 void XSIMD(codelet_hc2cfdftv_16) (planner *p) {
|
Chris@10
|
430 X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT);
|
Chris@10
|
431 }
|
Chris@10
|
432 #endif /* HAVE_FMA */
|