annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_12.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 71 FP additions, 66 FP multiplications,
Chris@10 32 * (or, 41 additions, 36 multiplications, 30 fused multiply/add),
Chris@10 33 * 86 stack variables, 2 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cfv.h"
Chris@10 36
Chris@10 37 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@10 44 V T3, T7, TH, TE, Th, TC, Tq, T11, TU, Tx, Tb, Tz, Tu, Tw, Tp;
Chris@10 45 V Tl, T9, Ta, T8, Ty, Tn, To, Tm, TG, T1, T2, Tt, T5, T6, T4;
Chris@10 46 V Tv, Tj, Tk, Ti, TD, Tf, Tg, Te, TB, TT, TF, TR, Tr;
Chris@10 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 49 Tt = LDW(&(W[0]));
Chris@10 50 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 51 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 52 T4 = LDW(&(W[TWVL * 6]));
Chris@10 53 Tv = LDW(&(W[TWVL * 8]));
Chris@10 54 Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 55 To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 56 T3 = VFMACONJ(T2, T1);
Chris@10 57 Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1));
Chris@10 58 Tm = LDW(&(W[TWVL * 2]));
Chris@10 59 TG = LDW(&(W[TWVL * 4]));
Chris@10 60 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@10 61 Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5));
Chris@10 62 Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 63 Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 64 Ti = LDW(&(W[TWVL * 18]));
Chris@10 65 TD = LDW(&(W[TWVL * 20]));
Chris@10 66 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
Chris@10 67 TH = VZMULIJ(TG, VFNMSCONJ(To, Tn));
Chris@10 68 Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 69 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 70 Te = LDW(&(W[TWVL * 10]));
Chris@10 71 TB = LDW(&(W[TWVL * 12]));
Chris@10 72 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
Chris@10 73 TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj));
Chris@10 74 T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 75 Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 76 T8 = LDW(&(W[TWVL * 14]));
Chris@10 77 Ty = LDW(&(W[TWVL * 16]));
Chris@10 78 Th = VZMULJ(Te, VFMACONJ(Tg, Tf));
Chris@10 79 TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf));
Chris@10 80 Tq = VADD(Tl, Tp);
Chris@10 81 T11 = VSUB(Tp, Tl);
Chris@10 82 TU = VSUB(Tu, Tw);
Chris@10 83 Tx = VADD(Tu, Tw);
Chris@10 84 Tb = VZMULJ(T8, VFMACONJ(Ta, T9));
Chris@10 85 Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9));
Chris@10 86 TT = VSUB(TC, TE);
Chris@10 87 TF = VADD(TC, TE);
Chris@10 88 TR = VFNMS(LDK(KP500000000), Tq, Th);
Chris@10 89 Tr = VADD(Th, Tq);
Chris@10 90 {
Chris@10 91 V TX, TA, T1d, TV, TY, TI, T1e, T12, TQ, Td, T10, Tc, T1a, TN, TJ;
Chris@10 92 V T1j, T1f, T1b, TS, TM, Ts, T17, T13, TZ, T1i, T1c, T16, TW, TP, TO;
Chris@10 93 V TL, TK, T1k, T1l, T1h, T1g, T18, T19, T15, T14;
Chris@10 94 T10 = VSUB(Tb, T7);
Chris@10 95 Tc = VADD(T7, Tb);
Chris@10 96 TX = VFNMS(LDK(KP500000000), Tx, Tz);
Chris@10 97 TA = VADD(Tx, Tz);
Chris@10 98 T1d = VADD(TU, TT);
Chris@10 99 TV = VSUB(TT, TU);
Chris@10 100 TY = VFNMS(LDK(KP500000000), TF, TH);
Chris@10 101 TI = VADD(TF, TH);
Chris@10 102 T1e = VADD(T10, T11);
Chris@10 103 T12 = VSUB(T10, T11);
Chris@10 104 TQ = VFNMS(LDK(KP500000000), Tc, T3);
Chris@10 105 Td = VADD(T3, Tc);
Chris@10 106 T1a = VADD(TX, TY);
Chris@10 107 TZ = VSUB(TX, TY);
Chris@10 108 TN = VADD(TA, TI);
Chris@10 109 TJ = VSUB(TA, TI);
Chris@10 110 T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e));
Chris@10 111 T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e));
Chris@10 112 T1b = VADD(TQ, TR);
Chris@10 113 TS = VSUB(TQ, TR);
Chris@10 114 TM = VADD(Td, Tr);
Chris@10 115 Ts = VSUB(Td, Tr);
Chris@10 116 T17 = VFMA(LDK(KP866025403), T12, TZ);
Chris@10 117 T13 = VFNMS(LDK(KP866025403), T12, TZ);
Chris@10 118 T1i = VSUB(T1b, T1a);
Chris@10 119 T1c = VADD(T1a, T1b);
Chris@10 120 T16 = VFNMS(LDK(KP866025403), TV, TS);
Chris@10 121 TW = VFMA(LDK(KP866025403), TV, TS);
Chris@10 122 TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM)));
Chris@10 123 TO = VMUL(LDK(KP500000000), VSUB(TM, TN));
Chris@10 124 TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts)));
Chris@10 125 TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts));
Chris@10 126 T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i)));
Chris@10 127 T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i));
Chris@10 128 T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c));
Chris@10 129 T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c)));
Chris@10 130 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
Chris@10 131 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
Chris@10 132 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW)));
Chris@10 133 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW));
Chris@10 134 ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)]));
Chris@10 135 ST(&(Rp[0]), TO, ms, &(Rp[0]));
Chris@10 136 ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0]));
Chris@10 137 ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)]));
Chris@10 138 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
Chris@10 139 ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0]));
Chris@10 140 ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0]));
Chris@10 141 ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)]));
Chris@10 142 ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)]));
Chris@10 143 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
Chris@10 144 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
Chris@10 145 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
Chris@10 146 }
Chris@10 147 }
Chris@10 148 }
Chris@10 149 VLEAVE();
Chris@10 150 }
Chris@10 151
Chris@10 152 static const tw_instr twinstr[] = {
Chris@10 153 VTW(1, 1),
Chris@10 154 VTW(1, 2),
Chris@10 155 VTW(1, 3),
Chris@10 156 VTW(1, 4),
Chris@10 157 VTW(1, 5),
Chris@10 158 VTW(1, 6),
Chris@10 159 VTW(1, 7),
Chris@10 160 VTW(1, 8),
Chris@10 161 VTW(1, 9),
Chris@10 162 VTW(1, 10),
Chris@10 163 VTW(1, 11),
Chris@10 164 {TW_NEXT, VL, 0}
Chris@10 165 };
Chris@10 166
Chris@10 167 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {41, 36, 30, 0} };
Chris@10 168
Chris@10 169 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
Chris@10 170 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
Chris@10 171 }
Chris@10 172 #else /* HAVE_FMA */
Chris@10 173
Chris@10 174 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
Chris@10 175
Chris@10 176 /*
Chris@10 177 * This function contains 71 FP additions, 41 FP multiplications,
Chris@10 178 * (or, 67 additions, 37 multiplications, 4 fused multiply/add),
Chris@10 179 * 58 stack variables, 4 constants, and 24 memory accesses
Chris@10 180 */
Chris@10 181 #include "hc2cfv.h"
Chris@10 182
Chris@10 183 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 184 {
Chris@10 185 DVK(KP433012701, +0.433012701892219323381861585376468091735701313);
Chris@10 186 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 187 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 189 {
Chris@10 190 INT m;
Chris@10 191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@10 192 V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN;
Chris@10 193 V T16;
Chris@10 194 {
Chris@10 195 V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7;
Chris@10 196 V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr;
Chris@10 197 V Tn, Tp, To, Tm, TJ, Th, TM;
Chris@10 198 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 199 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 200 T3 = VCONJ(T2);
Chris@10 201 Tz = LDW(&(W[0]));
Chris@10 202 TA = VZMULIJ(Tz, VSUB(T3, T1));
Chris@10 203 Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 204 Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 205 Td = VCONJ(Tc);
Chris@10 206 Ta = LDW(&(W[TWVL * 14]));
Chris@10 207 Te = VZMULJ(Ta, VADD(Tb, Td));
Chris@10 208 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 209 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 210 T8 = VCONJ(T7);
Chris@10 211 T5 = LDW(&(W[TWVL * 6]));
Chris@10 212 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@10 213 TB = LDW(&(W[TWVL * 8]));
Chris@10 214 TC = VZMULIJ(TB, VSUB(T8, T6));
Chris@10 215 TX = VSUB(TC, TA);
Chris@10 216 T13 = VSUB(Te, T9);
Chris@10 217 T4 = VADD(T1, T3);
Chris@10 218 Tf = VADD(T9, Te);
Chris@10 219 TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4));
Chris@10 220 TD = VADD(TA, TC);
Chris@10 221 TE = LDW(&(W[TWVL * 16]));
Chris@10 222 TF = VZMULIJ(TE, VSUB(Td, Tb));
Chris@10 223 T17 = VFNMS(LDK(KP500000000), TD, TF);
Chris@10 224 Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 225 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 226 Tk = VCONJ(Tj);
Chris@10 227 TH = LDW(&(W[TWVL * 12]));
Chris@10 228 TI = VZMULIJ(TH, VSUB(Tk, Ti));
Chris@10 229 Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 230 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 231 Tu = VCONJ(Tt);
Chris@10 232 Tr = LDW(&(W[TWVL * 2]));
Chris@10 233 Tv = VZMULJ(Tr, VADD(Ts, Tu));
Chris@10 234 Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 235 To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 236 Tp = VCONJ(To);
Chris@10 237 Tm = LDW(&(W[TWVL * 18]));
Chris@10 238 Tq = VZMULJ(Tm, VADD(Tn, Tp));
Chris@10 239 TJ = LDW(&(W[TWVL * 20]));
Chris@10 240 TK = VZMULIJ(TJ, VSUB(Tp, Tn));
Chris@10 241 TW = VSUB(TK, TI);
Chris@10 242 T14 = VSUB(Tv, Tq);
Chris@10 243 Tw = VADD(Tq, Tv);
Chris@10 244 Th = LDW(&(W[TWVL * 10]));
Chris@10 245 Tl = VZMULJ(Th, VADD(Ti, Tk));
Chris@10 246 T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl));
Chris@10 247 TL = VADD(TI, TK);
Chris@10 248 TM = LDW(&(W[TWVL * 4]));
Chris@10 249 TN = VZMULIJ(TM, VSUB(Tu, Ts));
Chris@10 250 T16 = VFNMS(LDK(KP500000000), TL, TN);
Chris@10 251 }
Chris@10 252 {
Chris@10 253 V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l;
Chris@10 254 V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11;
Chris@10 255 V T15, T18, T1a, T1f, T1b, T1e;
Chris@10 256 Tg = VADD(T4, Tf);
Chris@10 257 Tx = VADD(Tl, Tw);
Chris@10 258 Ty = VADD(Tg, Tx);
Chris@10 259 TS = VSUB(Tg, Tx);
Chris@10 260 TG = VADD(TD, TF);
Chris@10 261 TO = VADD(TL, TN);
Chris@10 262 TP = VADD(TG, TO);
Chris@10 263 TT = VBYI(VSUB(TO, TG));
Chris@10 264 TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP)));
Chris@10 265 ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)]));
Chris@10 266 TV = VMUL(LDK(KP500000000), VADD(TS, TT));
Chris@10 267 ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)]));
Chris@10 268 TR = VMUL(LDK(KP500000000), VADD(Ty, TP));
Chris@10 269 ST(&(Rp[0]), TR, ms, &(Rp[0]));
Chris@10 270 TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT)));
Chris@10 271 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
Chris@10 272 T1g = VADD(TX, TW);
Chris@10 273 T1h = VADD(T13, T14);
Chris@10 274 T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h))));
Chris@10 275 T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h))));
Chris@10 276 T1j = VADD(TZ, T10);
Chris@10 277 T1k = VMUL(LDK(KP500000000), VADD(T17, T16));
Chris@10 278 T1l = VSUB(T1j, T1k);
Chris@10 279 T1p = VADD(T1j, T1k);
Chris@10 280 T1m = VADD(T1i, T1l);
Chris@10 281 ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0]));
Chris@10 282 T1r = VCONJ(VSUB(T1p, T1o));
Chris@10 283 ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)]));
Chris@10 284 T1n = VCONJ(VSUB(T1l, T1i));
Chris@10 285 ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)]));
Chris@10 286 T1q = VADD(T1o, T1p);
Chris@10 287 ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0]));
Chris@10 288 TY = VMUL(LDK(KP433012701), VSUB(TW, TX));
Chris@10 289 T11 = VSUB(TZ, T10);
Chris@10 290 T12 = VADD(TY, T11);
Chris@10 291 T1c = VSUB(T11, TY);
Chris@10 292 T15 = VMUL(LDK(KP866025403), VSUB(T13, T14));
Chris@10 293 T18 = VSUB(T16, T17);
Chris@10 294 T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18)));
Chris@10 295 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18)));
Chris@10 296 T1a = VCONJ(VSUB(T12, T19));
Chris@10 297 ST(&(Rm[0]), T1a, -ms, &(Rm[0]));
Chris@10 298 T1f = VCONJ(VADD(T1c, T1d));
Chris@10 299 ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0]));
Chris@10 300 T1b = VADD(T12, T19);
Chris@10 301 ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)]));
Chris@10 302 T1e = VSUB(T1c, T1d);
Chris@10 303 ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)]));
Chris@10 304 }
Chris@10 305 }
Chris@10 306 }
Chris@10 307 VLEAVE();
Chris@10 308 }
Chris@10 309
Chris@10 310 static const tw_instr twinstr[] = {
Chris@10 311 VTW(1, 1),
Chris@10 312 VTW(1, 2),
Chris@10 313 VTW(1, 3),
Chris@10 314 VTW(1, 4),
Chris@10 315 VTW(1, 5),
Chris@10 316 VTW(1, 6),
Chris@10 317 VTW(1, 7),
Chris@10 318 VTW(1, 8),
Chris@10 319 VTW(1, 9),
Chris@10 320 VTW(1, 10),
Chris@10 321 VTW(1, 11),
Chris@10 322 {TW_NEXT, VL, 0}
Chris@10 323 };
Chris@10 324
Chris@10 325 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {67, 37, 4, 0} };
Chris@10 326
Chris@10 327 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
Chris@10 328 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
Chris@10 329 }
Chris@10 330 #endif /* HAVE_FMA */