Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 71 FP additions, 66 FP multiplications,
|
Chris@10
|
32 * (or, 41 additions, 36 multiplications, 30 fused multiply/add),
|
Chris@10
|
33 * 86 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cfv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT m;
|
Chris@10
|
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
|
Chris@10
|
44 V T3, T7, TH, TE, Th, TC, Tq, T11, TU, Tx, Tb, Tz, Tu, Tw, Tp;
|
Chris@10
|
45 V Tl, T9, Ta, T8, Ty, Tn, To, Tm, TG, T1, T2, Tt, T5, T6, T4;
|
Chris@10
|
46 V Tv, Tj, Tk, Ti, TD, Tf, Tg, Te, TB, TT, TF, TR, Tr;
|
Chris@10
|
47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
49 Tt = LDW(&(W[0]));
|
Chris@10
|
50 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
51 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
52 T4 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
53 Tv = LDW(&(W[TWVL * 8]));
|
Chris@10
|
54 Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
55 To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
56 T3 = VFMACONJ(T2, T1);
|
Chris@10
|
57 Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1));
|
Chris@10
|
58 Tm = LDW(&(W[TWVL * 2]));
|
Chris@10
|
59 TG = LDW(&(W[TWVL * 4]));
|
Chris@10
|
60 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
|
Chris@10
|
61 Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5));
|
Chris@10
|
62 Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
63 Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
64 Ti = LDW(&(W[TWVL * 18]));
|
Chris@10
|
65 TD = LDW(&(W[TWVL * 20]));
|
Chris@10
|
66 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
|
Chris@10
|
67 TH = VZMULIJ(TG, VFNMSCONJ(To, Tn));
|
Chris@10
|
68 Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
69 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
70 Te = LDW(&(W[TWVL * 10]));
|
Chris@10
|
71 TB = LDW(&(W[TWVL * 12]));
|
Chris@10
|
72 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
|
Chris@10
|
73 TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj));
|
Chris@10
|
74 T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
75 Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
76 T8 = LDW(&(W[TWVL * 14]));
|
Chris@10
|
77 Ty = LDW(&(W[TWVL * 16]));
|
Chris@10
|
78 Th = VZMULJ(Te, VFMACONJ(Tg, Tf));
|
Chris@10
|
79 TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf));
|
Chris@10
|
80 Tq = VADD(Tl, Tp);
|
Chris@10
|
81 T11 = VSUB(Tp, Tl);
|
Chris@10
|
82 TU = VSUB(Tu, Tw);
|
Chris@10
|
83 Tx = VADD(Tu, Tw);
|
Chris@10
|
84 Tb = VZMULJ(T8, VFMACONJ(Ta, T9));
|
Chris@10
|
85 Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9));
|
Chris@10
|
86 TT = VSUB(TC, TE);
|
Chris@10
|
87 TF = VADD(TC, TE);
|
Chris@10
|
88 TR = VFNMS(LDK(KP500000000), Tq, Th);
|
Chris@10
|
89 Tr = VADD(Th, Tq);
|
Chris@10
|
90 {
|
Chris@10
|
91 V TX, TA, T1d, TV, TY, TI, T1e, T12, TQ, Td, T10, Tc, T1a, TN, TJ;
|
Chris@10
|
92 V T1j, T1f, T1b, TS, TM, Ts, T17, T13, TZ, T1i, T1c, T16, TW, TP, TO;
|
Chris@10
|
93 V TL, TK, T1k, T1l, T1h, T1g, T18, T19, T15, T14;
|
Chris@10
|
94 T10 = VSUB(Tb, T7);
|
Chris@10
|
95 Tc = VADD(T7, Tb);
|
Chris@10
|
96 TX = VFNMS(LDK(KP500000000), Tx, Tz);
|
Chris@10
|
97 TA = VADD(Tx, Tz);
|
Chris@10
|
98 T1d = VADD(TU, TT);
|
Chris@10
|
99 TV = VSUB(TT, TU);
|
Chris@10
|
100 TY = VFNMS(LDK(KP500000000), TF, TH);
|
Chris@10
|
101 TI = VADD(TF, TH);
|
Chris@10
|
102 T1e = VADD(T10, T11);
|
Chris@10
|
103 T12 = VSUB(T10, T11);
|
Chris@10
|
104 TQ = VFNMS(LDK(KP500000000), Tc, T3);
|
Chris@10
|
105 Td = VADD(T3, Tc);
|
Chris@10
|
106 T1a = VADD(TX, TY);
|
Chris@10
|
107 TZ = VSUB(TX, TY);
|
Chris@10
|
108 TN = VADD(TA, TI);
|
Chris@10
|
109 TJ = VSUB(TA, TI);
|
Chris@10
|
110 T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e));
|
Chris@10
|
111 T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e));
|
Chris@10
|
112 T1b = VADD(TQ, TR);
|
Chris@10
|
113 TS = VSUB(TQ, TR);
|
Chris@10
|
114 TM = VADD(Td, Tr);
|
Chris@10
|
115 Ts = VSUB(Td, Tr);
|
Chris@10
|
116 T17 = VFMA(LDK(KP866025403), T12, TZ);
|
Chris@10
|
117 T13 = VFNMS(LDK(KP866025403), T12, TZ);
|
Chris@10
|
118 T1i = VSUB(T1b, T1a);
|
Chris@10
|
119 T1c = VADD(T1a, T1b);
|
Chris@10
|
120 T16 = VFNMS(LDK(KP866025403), TV, TS);
|
Chris@10
|
121 TW = VFMA(LDK(KP866025403), TV, TS);
|
Chris@10
|
122 TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM)));
|
Chris@10
|
123 TO = VMUL(LDK(KP500000000), VSUB(TM, TN));
|
Chris@10
|
124 TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts)));
|
Chris@10
|
125 TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts));
|
Chris@10
|
126 T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i)));
|
Chris@10
|
127 T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i));
|
Chris@10
|
128 T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c));
|
Chris@10
|
129 T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c)));
|
Chris@10
|
130 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
|
Chris@10
|
131 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
|
Chris@10
|
132 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW)));
|
Chris@10
|
133 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW));
|
Chris@10
|
134 ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
135 ST(&(Rp[0]), TO, ms, &(Rp[0]));
|
Chris@10
|
136 ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0]));
|
Chris@10
|
137 ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
138 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
139 ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0]));
|
Chris@10
|
140 ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0]));
|
Chris@10
|
141 ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
142 ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
143 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
|
Chris@10
|
144 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
|
Chris@10
|
145 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
146 }
|
Chris@10
|
147 }
|
Chris@10
|
148 }
|
Chris@10
|
149 VLEAVE();
|
Chris@10
|
150 }
|
Chris@10
|
151
|
Chris@10
|
152 static const tw_instr twinstr[] = {
|
Chris@10
|
153 VTW(1, 1),
|
Chris@10
|
154 VTW(1, 2),
|
Chris@10
|
155 VTW(1, 3),
|
Chris@10
|
156 VTW(1, 4),
|
Chris@10
|
157 VTW(1, 5),
|
Chris@10
|
158 VTW(1, 6),
|
Chris@10
|
159 VTW(1, 7),
|
Chris@10
|
160 VTW(1, 8),
|
Chris@10
|
161 VTW(1, 9),
|
Chris@10
|
162 VTW(1, 10),
|
Chris@10
|
163 VTW(1, 11),
|
Chris@10
|
164 {TW_NEXT, VL, 0}
|
Chris@10
|
165 };
|
Chris@10
|
166
|
Chris@10
|
167 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {41, 36, 30, 0} };
|
Chris@10
|
168
|
Chris@10
|
169 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
|
Chris@10
|
170 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
|
Chris@10
|
171 }
|
Chris@10
|
172 #else /* HAVE_FMA */
|
Chris@10
|
173
|
Chris@10
|
174 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
|
Chris@10
|
175
|
Chris@10
|
176 /*
|
Chris@10
|
177 * This function contains 71 FP additions, 41 FP multiplications,
|
Chris@10
|
178 * (or, 67 additions, 37 multiplications, 4 fused multiply/add),
|
Chris@10
|
179 * 58 stack variables, 4 constants, and 24 memory accesses
|
Chris@10
|
180 */
|
Chris@10
|
181 #include "hc2cfv.h"
|
Chris@10
|
182
|
Chris@10
|
183 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
184 {
|
Chris@10
|
185 DVK(KP433012701, +0.433012701892219323381861585376468091735701313);
|
Chris@10
|
186 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
187 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
189 {
|
Chris@10
|
190 INT m;
|
Chris@10
|
191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
|
Chris@10
|
192 V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN;
|
Chris@10
|
193 V T16;
|
Chris@10
|
194 {
|
Chris@10
|
195 V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7;
|
Chris@10
|
196 V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr;
|
Chris@10
|
197 V Tn, Tp, To, Tm, TJ, Th, TM;
|
Chris@10
|
198 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
199 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
200 T3 = VCONJ(T2);
|
Chris@10
|
201 Tz = LDW(&(W[0]));
|
Chris@10
|
202 TA = VZMULIJ(Tz, VSUB(T3, T1));
|
Chris@10
|
203 Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
204 Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
205 Td = VCONJ(Tc);
|
Chris@10
|
206 Ta = LDW(&(W[TWVL * 14]));
|
Chris@10
|
207 Te = VZMULJ(Ta, VADD(Tb, Td));
|
Chris@10
|
208 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
209 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
210 T8 = VCONJ(T7);
|
Chris@10
|
211 T5 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
212 T9 = VZMULJ(T5, VADD(T6, T8));
|
Chris@10
|
213 TB = LDW(&(W[TWVL * 8]));
|
Chris@10
|
214 TC = VZMULIJ(TB, VSUB(T8, T6));
|
Chris@10
|
215 TX = VSUB(TC, TA);
|
Chris@10
|
216 T13 = VSUB(Te, T9);
|
Chris@10
|
217 T4 = VADD(T1, T3);
|
Chris@10
|
218 Tf = VADD(T9, Te);
|
Chris@10
|
219 TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4));
|
Chris@10
|
220 TD = VADD(TA, TC);
|
Chris@10
|
221 TE = LDW(&(W[TWVL * 16]));
|
Chris@10
|
222 TF = VZMULIJ(TE, VSUB(Td, Tb));
|
Chris@10
|
223 T17 = VFNMS(LDK(KP500000000), TD, TF);
|
Chris@10
|
224 Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
225 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
226 Tk = VCONJ(Tj);
|
Chris@10
|
227 TH = LDW(&(W[TWVL * 12]));
|
Chris@10
|
228 TI = VZMULIJ(TH, VSUB(Tk, Ti));
|
Chris@10
|
229 Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
230 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
231 Tu = VCONJ(Tt);
|
Chris@10
|
232 Tr = LDW(&(W[TWVL * 2]));
|
Chris@10
|
233 Tv = VZMULJ(Tr, VADD(Ts, Tu));
|
Chris@10
|
234 Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
235 To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
236 Tp = VCONJ(To);
|
Chris@10
|
237 Tm = LDW(&(W[TWVL * 18]));
|
Chris@10
|
238 Tq = VZMULJ(Tm, VADD(Tn, Tp));
|
Chris@10
|
239 TJ = LDW(&(W[TWVL * 20]));
|
Chris@10
|
240 TK = VZMULIJ(TJ, VSUB(Tp, Tn));
|
Chris@10
|
241 TW = VSUB(TK, TI);
|
Chris@10
|
242 T14 = VSUB(Tv, Tq);
|
Chris@10
|
243 Tw = VADD(Tq, Tv);
|
Chris@10
|
244 Th = LDW(&(W[TWVL * 10]));
|
Chris@10
|
245 Tl = VZMULJ(Th, VADD(Ti, Tk));
|
Chris@10
|
246 T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl));
|
Chris@10
|
247 TL = VADD(TI, TK);
|
Chris@10
|
248 TM = LDW(&(W[TWVL * 4]));
|
Chris@10
|
249 TN = VZMULIJ(TM, VSUB(Tu, Ts));
|
Chris@10
|
250 T16 = VFNMS(LDK(KP500000000), TL, TN);
|
Chris@10
|
251 }
|
Chris@10
|
252 {
|
Chris@10
|
253 V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l;
|
Chris@10
|
254 V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11;
|
Chris@10
|
255 V T15, T18, T1a, T1f, T1b, T1e;
|
Chris@10
|
256 Tg = VADD(T4, Tf);
|
Chris@10
|
257 Tx = VADD(Tl, Tw);
|
Chris@10
|
258 Ty = VADD(Tg, Tx);
|
Chris@10
|
259 TS = VSUB(Tg, Tx);
|
Chris@10
|
260 TG = VADD(TD, TF);
|
Chris@10
|
261 TO = VADD(TL, TN);
|
Chris@10
|
262 TP = VADD(TG, TO);
|
Chris@10
|
263 TT = VBYI(VSUB(TO, TG));
|
Chris@10
|
264 TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP)));
|
Chris@10
|
265 ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
266 TV = VMUL(LDK(KP500000000), VADD(TS, TT));
|
Chris@10
|
267 ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
268 TR = VMUL(LDK(KP500000000), VADD(Ty, TP));
|
Chris@10
|
269 ST(&(Rp[0]), TR, ms, &(Rp[0]));
|
Chris@10
|
270 TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT)));
|
Chris@10
|
271 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
|
Chris@10
|
272 T1g = VADD(TX, TW);
|
Chris@10
|
273 T1h = VADD(T13, T14);
|
Chris@10
|
274 T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h))));
|
Chris@10
|
275 T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h))));
|
Chris@10
|
276 T1j = VADD(TZ, T10);
|
Chris@10
|
277 T1k = VMUL(LDK(KP500000000), VADD(T17, T16));
|
Chris@10
|
278 T1l = VSUB(T1j, T1k);
|
Chris@10
|
279 T1p = VADD(T1j, T1k);
|
Chris@10
|
280 T1m = VADD(T1i, T1l);
|
Chris@10
|
281 ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0]));
|
Chris@10
|
282 T1r = VCONJ(VSUB(T1p, T1o));
|
Chris@10
|
283 ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
284 T1n = VCONJ(VSUB(T1l, T1i));
|
Chris@10
|
285 ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
286 T1q = VADD(T1o, T1p);
|
Chris@10
|
287 ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0]));
|
Chris@10
|
288 TY = VMUL(LDK(KP433012701), VSUB(TW, TX));
|
Chris@10
|
289 T11 = VSUB(TZ, T10);
|
Chris@10
|
290 T12 = VADD(TY, T11);
|
Chris@10
|
291 T1c = VSUB(T11, TY);
|
Chris@10
|
292 T15 = VMUL(LDK(KP866025403), VSUB(T13, T14));
|
Chris@10
|
293 T18 = VSUB(T16, T17);
|
Chris@10
|
294 T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18)));
|
Chris@10
|
295 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18)));
|
Chris@10
|
296 T1a = VCONJ(VSUB(T12, T19));
|
Chris@10
|
297 ST(&(Rm[0]), T1a, -ms, &(Rm[0]));
|
Chris@10
|
298 T1f = VCONJ(VADD(T1c, T1d));
|
Chris@10
|
299 ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0]));
|
Chris@10
|
300 T1b = VADD(T12, T19);
|
Chris@10
|
301 ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
302 T1e = VSUB(T1c, T1d);
|
Chris@10
|
303 ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
304 }
|
Chris@10
|
305 }
|
Chris@10
|
306 }
|
Chris@10
|
307 VLEAVE();
|
Chris@10
|
308 }
|
Chris@10
|
309
|
Chris@10
|
310 static const tw_instr twinstr[] = {
|
Chris@10
|
311 VTW(1, 1),
|
Chris@10
|
312 VTW(1, 2),
|
Chris@10
|
313 VTW(1, 3),
|
Chris@10
|
314 VTW(1, 4),
|
Chris@10
|
315 VTW(1, 5),
|
Chris@10
|
316 VTW(1, 6),
|
Chris@10
|
317 VTW(1, 7),
|
Chris@10
|
318 VTW(1, 8),
|
Chris@10
|
319 VTW(1, 9),
|
Chris@10
|
320 VTW(1, 10),
|
Chris@10
|
321 VTW(1, 11),
|
Chris@10
|
322 {TW_NEXT, VL, 0}
|
Chris@10
|
323 };
|
Chris@10
|
324
|
Chris@10
|
325 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {67, 37, 4, 0} };
|
Chris@10
|
326
|
Chris@10
|
327 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
|
Chris@10
|
328 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
|
Chris@10
|
329 }
|
Chris@10
|
330 #endif /* HAVE_FMA */
|