Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 61 FP additions, 60 FP multiplications,
|
Chris@10
|
32 * (or, 33 additions, 32 multiplications, 28 fused multiply/add),
|
Chris@10
|
33 * 77 stack variables, 5 constants, and 20 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cfv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
43 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
44 {
|
Chris@10
|
45 INT m;
|
Chris@10
|
46 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
|
Chris@10
|
47 V T5, T6, Tw, Tr, Tc, Tj, Tl, Tm, Tk, Ts, Tg, Ty, T3, T4, T1;
|
Chris@10
|
48 V T2, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf, Td, Tx, Tn, Tt, Th, TQ;
|
Chris@10
|
49 V TT, Tz, T7, TR, To, Tu, TU;
|
Chris@10
|
50 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
51 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
52 Tv = LDW(&(W[0]));
|
Chris@10
|
53 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
54 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
55 Tq = LDW(&(W[TWVL * 6]));
|
Chris@10
|
56 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
57 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
58 T9 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
59 Ti = LDW(&(W[TWVL * 4]));
|
Chris@10
|
60 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
|
Chris@10
|
61 Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
62 Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
63 Tr = VZMULJ(Tq, VFMACONJ(T6, T5));
|
Chris@10
|
64 Td = LDW(&(W[TWVL * 12]));
|
Chris@10
|
65 Tx = LDW(&(W[TWVL * 10]));
|
Chris@10
|
66 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
|
Chris@10
|
67 Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta));
|
Chris@10
|
68 Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
69 Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
70 Tk = LDW(&(W[TWVL * 14]));
|
Chris@10
|
71 Ts = LDW(&(W[TWVL * 16]));
|
Chris@10
|
72 Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te));
|
Chris@10
|
73 Ty = VZMULJ(Tx, VFMACONJ(Tf, Te));
|
Chris@10
|
74 T3 = VFMACONJ(T2, T1);
|
Chris@10
|
75 T4 = LDW(&(W[TWVL * 8]));
|
Chris@10
|
76 Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl));
|
Chris@10
|
77 Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl));
|
Chris@10
|
78 Th = VSUB(Tc, Tg);
|
Chris@10
|
79 TQ = VADD(Tc, Tg);
|
Chris@10
|
80 TT = VADD(Tw, Ty);
|
Chris@10
|
81 Tz = VSUB(Tw, Ty);
|
Chris@10
|
82 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
|
Chris@10
|
83 TR = VADD(Tj, Tn);
|
Chris@10
|
84 To = VSUB(Tj, Tn);
|
Chris@10
|
85 Tu = VSUB(Tr, Tt);
|
Chris@10
|
86 TU = VADD(Tr, Tt);
|
Chris@10
|
87 {
|
Chris@10
|
88 V TP, T8, TS, T11, Tp, TH, TA, TG, TV, T12, TE, TB, TM, TI, TZ;
|
Chris@10
|
89 V TW, T17, T13, TD, TC, TY, TX, TL, TF, T10, T16, TN, TO, TK, TJ;
|
Chris@10
|
90 V T18, T19, T15, T14;
|
Chris@10
|
91 TP = VADD(T3, T7);
|
Chris@10
|
92 T8 = VSUB(T3, T7);
|
Chris@10
|
93 TS = VADD(TQ, TR);
|
Chris@10
|
94 T11 = VSUB(TQ, TR);
|
Chris@10
|
95 Tp = VSUB(Th, To);
|
Chris@10
|
96 TH = VADD(Th, To);
|
Chris@10
|
97 TA = VSUB(Tu, Tz);
|
Chris@10
|
98 TG = VADD(Tz, Tu);
|
Chris@10
|
99 TV = VADD(TT, TU);
|
Chris@10
|
100 T12 = VSUB(TU, TT);
|
Chris@10
|
101 TE = VSUB(Tp, TA);
|
Chris@10
|
102 TB = VADD(Tp, TA);
|
Chris@10
|
103 TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH));
|
Chris@10
|
104 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG));
|
Chris@10
|
105 TZ = VSUB(TS, TV);
|
Chris@10
|
106 TW = VADD(TS, TV);
|
Chris@10
|
107 T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12));
|
Chris@10
|
108 T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11));
|
Chris@10
|
109 TD = VFNMS(LDK(KP250000000), TB, T8);
|
Chris@10
|
110 TC = VMUL(LDK(KP500000000), VADD(T8, TB));
|
Chris@10
|
111 TY = VFNMS(LDK(KP250000000), TW, TP);
|
Chris@10
|
112 TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW)));
|
Chris@10
|
113 TL = VFMA(LDK(KP559016994), TE, TD);
|
Chris@10
|
114 TF = VFNMS(LDK(KP559016994), TE, TD);
|
Chris@10
|
115 ST(&(Rp[0]), TC, ms, &(Rp[0]));
|
Chris@10
|
116 T10 = VFMA(LDK(KP559016994), TZ, TY);
|
Chris@10
|
117 T16 = VFNMS(LDK(KP559016994), TZ, TY);
|
Chris@10
|
118 ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0]));
|
Chris@10
|
119 TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL)));
|
Chris@10
|
120 TO = VMUL(LDK(KP500000000), VFMAI(TM, TL));
|
Chris@10
|
121 TK = VMUL(LDK(KP500000000), VFMAI(TI, TF));
|
Chris@10
|
122 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF)));
|
Chris@10
|
123 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
|
Chris@10
|
124 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
|
Chris@10
|
125 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10)));
|
Chris@10
|
126 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10));
|
Chris@10
|
127 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
128 ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0]));
|
Chris@10
|
129 ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0]));
|
Chris@10
|
130 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
131 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
132 ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0]));
|
Chris@10
|
133 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
|
Chris@10
|
134 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
135 }
|
Chris@10
|
136 }
|
Chris@10
|
137 }
|
Chris@10
|
138 VLEAVE();
|
Chris@10
|
139 }
|
Chris@10
|
140
|
Chris@10
|
141 static const tw_instr twinstr[] = {
|
Chris@10
|
142 VTW(1, 1),
|
Chris@10
|
143 VTW(1, 2),
|
Chris@10
|
144 VTW(1, 3),
|
Chris@10
|
145 VTW(1, 4),
|
Chris@10
|
146 VTW(1, 5),
|
Chris@10
|
147 VTW(1, 6),
|
Chris@10
|
148 VTW(1, 7),
|
Chris@10
|
149 VTW(1, 8),
|
Chris@10
|
150 VTW(1, 9),
|
Chris@10
|
151 {TW_NEXT, VL, 0}
|
Chris@10
|
152 };
|
Chris@10
|
153
|
Chris@10
|
154 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} };
|
Chris@10
|
155
|
Chris@10
|
156 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
|
Chris@10
|
157 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
|
Chris@10
|
158 }
|
Chris@10
|
159 #else /* HAVE_FMA */
|
Chris@10
|
160
|
Chris@10
|
161 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
|
Chris@10
|
162
|
Chris@10
|
163 /*
|
Chris@10
|
164 * This function contains 61 FP additions, 38 FP multiplications,
|
Chris@10
|
165 * (or, 55 additions, 32 multiplications, 6 fused multiply/add),
|
Chris@10
|
166 * 82 stack variables, 5 constants, and 20 memory accesses
|
Chris@10
|
167 */
|
Chris@10
|
168 #include "hc2cfv.h"
|
Chris@10
|
169
|
Chris@10
|
170 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
171 {
|
Chris@10
|
172 DVK(KP125000000, +0.125000000000000000000000000000000000000000000);
|
Chris@10
|
173 DVK(KP279508497, +0.279508497187473712051146708591409529430077295);
|
Chris@10
|
174 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
175 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
177 {
|
Chris@10
|
178 INT m;
|
Chris@10
|
179 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
|
Chris@10
|
180 V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN;
|
Chris@10
|
181 V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c;
|
Chris@10
|
182 V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d;
|
Chris@10
|
183 {
|
Chris@10
|
184 V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6;
|
Chris@10
|
185 V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm;
|
Chris@10
|
186 V TC, T4, T9, T5;
|
Chris@10
|
187 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
188 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
189 T3 = VCONJ(T2);
|
Chris@10
|
190 Tx = LDW(&(W[0]));
|
Chris@10
|
191 Ty = VZMULIJ(Tx, VSUB(T3, T1));
|
Chris@10
|
192 T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
193 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
194 T7 = VCONJ(T6);
|
Chris@10
|
195 TA = LDW(&(W[TWVL * 6]));
|
Chris@10
|
196 TB = VZMULJ(TA, VADD(T7, T8));
|
Chris@10
|
197 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
198 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
199 Te = VCONJ(Td);
|
Chris@10
|
200 Tb = LDW(&(W[TWVL * 2]));
|
Chris@10
|
201 Tf = VZMULJ(Tb, VADD(Tc, Te));
|
Chris@10
|
202 Tr = LDW(&(W[TWVL * 4]));
|
Chris@10
|
203 Ts = VZMULIJ(Tr, VSUB(Te, Tc));
|
Chris@10
|
204 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
205 Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
206 Ti = VCONJ(Th);
|
Chris@10
|
207 Tg = LDW(&(W[TWVL * 12]));
|
Chris@10
|
208 Tk = VZMULIJ(Tg, VSUB(Ti, Tj));
|
Chris@10
|
209 Tv = LDW(&(W[TWVL * 10]));
|
Chris@10
|
210 Tw = VZMULJ(Tv, VADD(Ti, Tj));
|
Chris@10
|
211 Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
212 To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
213 Tp = VCONJ(To);
|
Chris@10
|
214 Tm = LDW(&(W[TWVL * 14]));
|
Chris@10
|
215 Tq = VZMULJ(Tm, VADD(Tn, Tp));
|
Chris@10
|
216 TC = LDW(&(W[TWVL * 16]));
|
Chris@10
|
217 TD = VZMULIJ(TC, VSUB(Tp, Tn));
|
Chris@10
|
218 Tl = VSUB(Tf, Tk);
|
Chris@10
|
219 Tt = VSUB(Tq, Ts);
|
Chris@10
|
220 Tu = VADD(Tl, Tt);
|
Chris@10
|
221 TY = VADD(Ty, Tw);
|
Chris@10
|
222 TZ = VADD(TB, TD);
|
Chris@10
|
223 T10 = VADD(TY, TZ);
|
Chris@10
|
224 Tz = VSUB(Tw, Ty);
|
Chris@10
|
225 TE = VSUB(TB, TD);
|
Chris@10
|
226 TF = VADD(Tz, TE);
|
Chris@10
|
227 TV = VADD(Tf, Tk);
|
Chris@10
|
228 TW = VADD(Ts, Tq);
|
Chris@10
|
229 TX = VADD(TV, TW);
|
Chris@10
|
230 T4 = VADD(T1, T3);
|
Chris@10
|
231 T5 = LDW(&(W[TWVL * 8]));
|
Chris@10
|
232 T9 = VZMULIJ(T5, VSUB(T7, T8));
|
Chris@10
|
233 Ta = VSUB(T4, T9);
|
Chris@10
|
234 TU = VADD(T4, T9);
|
Chris@10
|
235 }
|
Chris@10
|
236 TL = VSUB(Tl, Tt);
|
Chris@10
|
237 TM = VSUB(TE, Tz);
|
Chris@10
|
238 TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM))));
|
Chris@10
|
239 TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM))));
|
Chris@10
|
240 TI = VMUL(LDK(KP279508497), VSUB(Tu, TF));
|
Chris@10
|
241 TG = VADD(Tu, TF);
|
Chris@10
|
242 TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta));
|
Chris@10
|
243 TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG)));
|
Chris@10
|
244 TQ = VSUB(TJ, TI);
|
Chris@10
|
245 TK = VADD(TI, TJ);
|
Chris@10
|
246 ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0]));
|
Chris@10
|
247 TT = VCONJ(VADD(TQ, TR));
|
Chris@10
|
248 ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0]));
|
Chris@10
|
249 TO = VSUB(TK, TN);
|
Chris@10
|
250 ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
251 TP = VCONJ(VADD(TK, TN));
|
Chris@10
|
252 ST(&(Rm[0]), TP, -ms, &(Rm[0]));
|
Chris@10
|
253 TS = VSUB(TQ, TR);
|
Chris@10
|
254 ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
255 T16 = VSUB(TZ, TY);
|
Chris@10
|
256 T17 = VSUB(TV, TW);
|
Chris@10
|
257 T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16))));
|
Chris@10
|
258 T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16))));
|
Chris@10
|
259 T14 = VMUL(LDK(KP279508497), VSUB(TX, T10));
|
Chris@10
|
260 T11 = VADD(TX, T10);
|
Chris@10
|
261 T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU));
|
Chris@10
|
262 T12 = VMUL(LDK(KP500000000), VADD(TU, T11));
|
Chris@10
|
263 T1b = VADD(T14, T13);
|
Chris@10
|
264 T15 = VSUB(T13, T14);
|
Chris@10
|
265 ST(&(Rp[0]), T12, ms, &(Rp[0]));
|
Chris@10
|
266 T1e = VADD(T1b, T1c);
|
Chris@10
|
267 ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0]));
|
Chris@10
|
268 T19 = VCONJ(VSUB(T15, T18));
|
Chris@10
|
269 ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
270 T1a = VADD(T15, T18);
|
Chris@10
|
271 ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0]));
|
Chris@10
|
272 T1d = VCONJ(VSUB(T1b, T1c));
|
Chris@10
|
273 ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
274 }
|
Chris@10
|
275 }
|
Chris@10
|
276 VLEAVE();
|
Chris@10
|
277 }
|
Chris@10
|
278
|
Chris@10
|
279 static const tw_instr twinstr[] = {
|
Chris@10
|
280 VTW(1, 1),
|
Chris@10
|
281 VTW(1, 2),
|
Chris@10
|
282 VTW(1, 3),
|
Chris@10
|
283 VTW(1, 4),
|
Chris@10
|
284 VTW(1, 5),
|
Chris@10
|
285 VTW(1, 6),
|
Chris@10
|
286 VTW(1, 7),
|
Chris@10
|
287 VTW(1, 8),
|
Chris@10
|
288 VTW(1, 9),
|
Chris@10
|
289 {TW_NEXT, VL, 0}
|
Chris@10
|
290 };
|
Chris@10
|
291
|
Chris@10
|
292 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} };
|
Chris@10
|
293
|
Chris@10
|
294 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
|
Chris@10
|
295 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
|
Chris@10
|
296 }
|
Chris@10
|
297 #endif /* HAVE_FMA */
|