Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 41 FP additions, 32 FP multiplications,
|
Chris@10
|
32 * (or, 23 additions, 14 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 51 stack variables, 1 constants, and 16 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cbv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
40 {
|
Chris@10
|
41 INT m;
|
Chris@10
|
42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
|
Chris@10
|
43 V TJ, T4, Tf, TB, TD, TE, Tm, T1, Tj, TF, Tp, Tb, Tg, Tt, Tx;
|
Chris@10
|
44 V T2, T3, Td, Te, T5, T6, T8, T9, Tn, T7, To, Ta, Tk, Tl, TG;
|
Chris@10
|
45 V TL, Tq, Tc, Tu, Th, Tv, Ty, Tw, TC, Ti, TK, TA, Tz, TI, TH;
|
Chris@10
|
46 V Ts, Tr, TN, TM;
|
Chris@10
|
47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
48 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
49 Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
50 Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
51 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
52 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
53 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
54 T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
55 TJ = LDW(&(W[0]));
|
Chris@10
|
56 Tk = VFMACONJ(T3, T2);
|
Chris@10
|
57 T4 = VFNMSCONJ(T3, T2);
|
Chris@10
|
58 Tl = VFMACONJ(Te, Td);
|
Chris@10
|
59 Tf = VFNMSCONJ(Te, Td);
|
Chris@10
|
60 Tn = VFMACONJ(T6, T5);
|
Chris@10
|
61 T7 = VFNMSCONJ(T6, T5);
|
Chris@10
|
62 To = VFMACONJ(T9, T8);
|
Chris@10
|
63 Ta = VFMSCONJ(T9, T8);
|
Chris@10
|
64 TB = LDW(&(W[TWVL * 8]));
|
Chris@10
|
65 TD = LDW(&(W[TWVL * 6]));
|
Chris@10
|
66 TE = VADD(Tk, Tl);
|
Chris@10
|
67 Tm = VSUB(Tk, Tl);
|
Chris@10
|
68 T1 = LDW(&(W[TWVL * 12]));
|
Chris@10
|
69 Tj = LDW(&(W[TWVL * 10]));
|
Chris@10
|
70 TF = VADD(Tn, To);
|
Chris@10
|
71 Tp = VSUB(Tn, To);
|
Chris@10
|
72 Tb = VADD(T7, Ta);
|
Chris@10
|
73 Tg = VSUB(T7, Ta);
|
Chris@10
|
74 Tt = LDW(&(W[TWVL * 4]));
|
Chris@10
|
75 Tx = LDW(&(W[TWVL * 2]));
|
Chris@10
|
76 TG = VZMUL(TD, VSUB(TE, TF));
|
Chris@10
|
77 TL = VADD(TE, TF);
|
Chris@10
|
78 Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
|
Chris@10
|
79 Tc = VFMA(LDK(KP707106781), Tb, T4);
|
Chris@10
|
80 Tu = VFNMS(LDK(KP707106781), Tb, T4);
|
Chris@10
|
81 Th = VFMA(LDK(KP707106781), Tg, Tf);
|
Chris@10
|
82 Tv = VFNMS(LDK(KP707106781), Tg, Tf);
|
Chris@10
|
83 Ty = VZMUL(Tx, VFMAI(Tp, Tm));
|
Chris@10
|
84 Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
|
Chris@10
|
85 TC = VZMULI(TB, VFMAI(Tv, Tu));
|
Chris@10
|
86 Ti = VZMULI(T1, VFNMSI(Th, Tc));
|
Chris@10
|
87 TK = VZMULI(TJ, VFMAI(Th, Tc));
|
Chris@10
|
88 TA = VCONJ(VSUB(Ty, Tw));
|
Chris@10
|
89 Tz = VADD(Tw, Ty);
|
Chris@10
|
90 TI = VCONJ(VSUB(TG, TC));
|
Chris@10
|
91 TH = VADD(TC, TG);
|
Chris@10
|
92 Ts = VCONJ(VSUB(Tq, Ti));
|
Chris@10
|
93 Tr = VADD(Ti, Tq);
|
Chris@10
|
94 TN = VCONJ(VSUB(TL, TK));
|
Chris@10
|
95 TM = VADD(TK, TL);
|
Chris@10
|
96 ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
97 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
98 ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
|
Chris@10
|
99 ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
|
Chris@10
|
100 ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
101 ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
102 ST(&(Rm[0]), TN, -ms, &(Rm[0]));
|
Chris@10
|
103 ST(&(Rp[0]), TM, ms, &(Rp[0]));
|
Chris@10
|
104 }
|
Chris@10
|
105 }
|
Chris@10
|
106 VLEAVE();
|
Chris@10
|
107 }
|
Chris@10
|
108
|
Chris@10
|
109 static const tw_instr twinstr[] = {
|
Chris@10
|
110 VTW(1, 1),
|
Chris@10
|
111 VTW(1, 2),
|
Chris@10
|
112 VTW(1, 3),
|
Chris@10
|
113 VTW(1, 4),
|
Chris@10
|
114 VTW(1, 5),
|
Chris@10
|
115 VTW(1, 6),
|
Chris@10
|
116 VTW(1, 7),
|
Chris@10
|
117 {TW_NEXT, VL, 0}
|
Chris@10
|
118 };
|
Chris@10
|
119
|
Chris@10
|
120 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} };
|
Chris@10
|
121
|
Chris@10
|
122 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
|
Chris@10
|
123 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
|
Chris@10
|
124 }
|
Chris@10
|
125 #else /* HAVE_FMA */
|
Chris@10
|
126
|
Chris@10
|
127 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
|
Chris@10
|
128
|
Chris@10
|
129 /*
|
Chris@10
|
130 * This function contains 41 FP additions, 16 FP multiplications,
|
Chris@10
|
131 * (or, 41 additions, 16 multiplications, 0 fused multiply/add),
|
Chris@10
|
132 * 55 stack variables, 1 constants, and 16 memory accesses
|
Chris@10
|
133 */
|
Chris@10
|
134 #include "hc2cbv.h"
|
Chris@10
|
135
|
Chris@10
|
136 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
137 {
|
Chris@10
|
138 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
139 {
|
Chris@10
|
140 INT m;
|
Chris@10
|
141 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
|
Chris@10
|
142 V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
|
Chris@10
|
143 V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
|
Chris@10
|
144 V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
|
Chris@10
|
145 V Ty, Tz, Tx, TF, TD, TM, TE, TL;
|
Chris@10
|
146 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
147 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
148 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
149 T4 = VCONJ(T3);
|
Chris@10
|
150 Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
151 Ti = VCONJ(Th);
|
Chris@10
|
152 T5 = VSUB(T2, T4);
|
Chris@10
|
153 Tj = VSUB(Tg, Ti);
|
Chris@10
|
154 To = VADD(T2, T4);
|
Chris@10
|
155 Tp = VADD(Tg, Ti);
|
Chris@10
|
156 Tq = VSUB(To, Tp);
|
Chris@10
|
157 TI = VADD(To, Tp);
|
Chris@10
|
158 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
159 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
160 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
161 T8 = VCONJ(T7);
|
Chris@10
|
162 Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
163 Tb = VCONJ(Ta);
|
Chris@10
|
164 T9 = VSUB(T6, T8);
|
Chris@10
|
165 Td = VSUB(Tb, Tc);
|
Chris@10
|
166 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
|
Chris@10
|
167 Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
|
Chris@10
|
168 Tr = VADD(T6, T8);
|
Chris@10
|
169 Ts = VADD(Tb, Tc);
|
Chris@10
|
170 Tt = VBYI(VSUB(Tr, Ts));
|
Chris@10
|
171 TJ = VADD(Tr, Ts);
|
Chris@10
|
172 TP = VADD(TI, TJ);
|
Chris@10
|
173 Tn = LDW(&(W[TWVL * 10]));
|
Chris@10
|
174 Tu = VZMUL(Tn, VSUB(Tq, Tt));
|
Chris@10
|
175 Tf = VADD(T5, Te);
|
Chris@10
|
176 Tl = VBYI(VADD(Tj, Tk));
|
Chris@10
|
177 T1 = LDW(&(W[TWVL * 12]));
|
Chris@10
|
178 Tm = VZMULI(T1, VSUB(Tf, Tl));
|
Chris@10
|
179 TN = LDW(&(W[0]));
|
Chris@10
|
180 TO = VZMULI(TN, VADD(Tl, Tf));
|
Chris@10
|
181 Tv = VADD(Tm, Tu);
|
Chris@10
|
182 ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
183 TR = VCONJ(VSUB(TP, TO));
|
Chris@10
|
184 ST(&(Rm[0]), TR, -ms, &(Rm[0]));
|
Chris@10
|
185 Tw = VCONJ(VSUB(Tu, Tm));
|
Chris@10
|
186 ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
187 TQ = VADD(TO, TP);
|
Chris@10
|
188 ST(&(Rp[0]), TQ, ms, &(Rp[0]));
|
Chris@10
|
189 TB = LDW(&(W[TWVL * 2]));
|
Chris@10
|
190 TC = VZMUL(TB, VADD(Tq, Tt));
|
Chris@10
|
191 TH = LDW(&(W[TWVL * 6]));
|
Chris@10
|
192 TK = VZMUL(TH, VSUB(TI, TJ));
|
Chris@10
|
193 Ty = VBYI(VSUB(Tk, Tj));
|
Chris@10
|
194 Tz = VSUB(T5, Te);
|
Chris@10
|
195 Tx = LDW(&(W[TWVL * 4]));
|
Chris@10
|
196 TA = VZMULI(Tx, VADD(Ty, Tz));
|
Chris@10
|
197 TF = LDW(&(W[TWVL * 8]));
|
Chris@10
|
198 TG = VZMULI(TF, VSUB(Tz, Ty));
|
Chris@10
|
199 TD = VADD(TA, TC);
|
Chris@10
|
200 ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
201 TM = VCONJ(VSUB(TK, TG));
|
Chris@10
|
202 ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
|
Chris@10
|
203 TE = VCONJ(VSUB(TC, TA));
|
Chris@10
|
204 ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
205 TL = VADD(TG, TK);
|
Chris@10
|
206 ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
|
Chris@10
|
207 }
|
Chris@10
|
208 }
|
Chris@10
|
209 VLEAVE();
|
Chris@10
|
210 }
|
Chris@10
|
211
|
Chris@10
|
212 static const tw_instr twinstr[] = {
|
Chris@10
|
213 VTW(1, 1),
|
Chris@10
|
214 VTW(1, 2),
|
Chris@10
|
215 VTW(1, 3),
|
Chris@10
|
216 VTW(1, 4),
|
Chris@10
|
217 VTW(1, 5),
|
Chris@10
|
218 VTW(1, 6),
|
Chris@10
|
219 VTW(1, 7),
|
Chris@10
|
220 {TW_NEXT, VL, 0}
|
Chris@10
|
221 };
|
Chris@10
|
222
|
Chris@10
|
223 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} };
|
Chris@10
|
224
|
Chris@10
|
225 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
|
Chris@10
|
226 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
|
Chris@10
|
227 }
|
Chris@10
|
228 #endif /* HAVE_FMA */
|