annotate src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 41 FP additions, 32 FP multiplications,
Chris@10 32 * (or, 23 additions, 14 multiplications, 18 fused multiply/add),
Chris@10 33 * 51 stack variables, 1 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cbv.h"
Chris@10 36
Chris@10 37 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 43 V TJ, T4, Tf, TB, TD, TE, Tm, T1, Tj, TF, Tp, Tb, Tg, Tt, Tx;
Chris@10 44 V T2, T3, Td, Te, T5, T6, T8, T9, Tn, T7, To, Ta, Tk, Tl, TG;
Chris@10 45 V TL, Tq, Tc, Tu, Th, Tv, Ty, Tw, TC, Ti, TK, TA, Tz, TI, TH;
Chris@10 46 V Ts, Tr, TN, TM;
Chris@10 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 48 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 49 Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 50 Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 51 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 52 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 53 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 54 T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 55 TJ = LDW(&(W[0]));
Chris@10 56 Tk = VFMACONJ(T3, T2);
Chris@10 57 T4 = VFNMSCONJ(T3, T2);
Chris@10 58 Tl = VFMACONJ(Te, Td);
Chris@10 59 Tf = VFNMSCONJ(Te, Td);
Chris@10 60 Tn = VFMACONJ(T6, T5);
Chris@10 61 T7 = VFNMSCONJ(T6, T5);
Chris@10 62 To = VFMACONJ(T9, T8);
Chris@10 63 Ta = VFMSCONJ(T9, T8);
Chris@10 64 TB = LDW(&(W[TWVL * 8]));
Chris@10 65 TD = LDW(&(W[TWVL * 6]));
Chris@10 66 TE = VADD(Tk, Tl);
Chris@10 67 Tm = VSUB(Tk, Tl);
Chris@10 68 T1 = LDW(&(W[TWVL * 12]));
Chris@10 69 Tj = LDW(&(W[TWVL * 10]));
Chris@10 70 TF = VADD(Tn, To);
Chris@10 71 Tp = VSUB(Tn, To);
Chris@10 72 Tb = VADD(T7, Ta);
Chris@10 73 Tg = VSUB(T7, Ta);
Chris@10 74 Tt = LDW(&(W[TWVL * 4]));
Chris@10 75 Tx = LDW(&(W[TWVL * 2]));
Chris@10 76 TG = VZMUL(TD, VSUB(TE, TF));
Chris@10 77 TL = VADD(TE, TF);
Chris@10 78 Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
Chris@10 79 Tc = VFMA(LDK(KP707106781), Tb, T4);
Chris@10 80 Tu = VFNMS(LDK(KP707106781), Tb, T4);
Chris@10 81 Th = VFMA(LDK(KP707106781), Tg, Tf);
Chris@10 82 Tv = VFNMS(LDK(KP707106781), Tg, Tf);
Chris@10 83 Ty = VZMUL(Tx, VFMAI(Tp, Tm));
Chris@10 84 Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
Chris@10 85 TC = VZMULI(TB, VFMAI(Tv, Tu));
Chris@10 86 Ti = VZMULI(T1, VFNMSI(Th, Tc));
Chris@10 87 TK = VZMULI(TJ, VFMAI(Th, Tc));
Chris@10 88 TA = VCONJ(VSUB(Ty, Tw));
Chris@10 89 Tz = VADD(Tw, Ty);
Chris@10 90 TI = VCONJ(VSUB(TG, TC));
Chris@10 91 TH = VADD(TC, TG);
Chris@10 92 Ts = VCONJ(VSUB(Tq, Ti));
Chris@10 93 Tr = VADD(Ti, Tq);
Chris@10 94 TN = VCONJ(VSUB(TL, TK));
Chris@10 95 TM = VADD(TK, TL);
Chris@10 96 ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
Chris@10 97 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
Chris@10 98 ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
Chris@10 99 ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
Chris@10 100 ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
Chris@10 101 ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
Chris@10 102 ST(&(Rm[0]), TN, -ms, &(Rm[0]));
Chris@10 103 ST(&(Rp[0]), TM, ms, &(Rp[0]));
Chris@10 104 }
Chris@10 105 }
Chris@10 106 VLEAVE();
Chris@10 107 }
Chris@10 108
Chris@10 109 static const tw_instr twinstr[] = {
Chris@10 110 VTW(1, 1),
Chris@10 111 VTW(1, 2),
Chris@10 112 VTW(1, 3),
Chris@10 113 VTW(1, 4),
Chris@10 114 VTW(1, 5),
Chris@10 115 VTW(1, 6),
Chris@10 116 VTW(1, 7),
Chris@10 117 {TW_NEXT, VL, 0}
Chris@10 118 };
Chris@10 119
Chris@10 120 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} };
Chris@10 121
Chris@10 122 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
Chris@10 123 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
Chris@10 124 }
Chris@10 125 #else /* HAVE_FMA */
Chris@10 126
Chris@10 127 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
Chris@10 128
Chris@10 129 /*
Chris@10 130 * This function contains 41 FP additions, 16 FP multiplications,
Chris@10 131 * (or, 41 additions, 16 multiplications, 0 fused multiply/add),
Chris@10 132 * 55 stack variables, 1 constants, and 16 memory accesses
Chris@10 133 */
Chris@10 134 #include "hc2cbv.h"
Chris@10 135
Chris@10 136 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 137 {
Chris@10 138 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 139 {
Chris@10 140 INT m;
Chris@10 141 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 142 V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
Chris@10 143 V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
Chris@10 144 V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
Chris@10 145 V Ty, Tz, Tx, TF, TD, TM, TE, TL;
Chris@10 146 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 147 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 148 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 149 T4 = VCONJ(T3);
Chris@10 150 Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 151 Ti = VCONJ(Th);
Chris@10 152 T5 = VSUB(T2, T4);
Chris@10 153 Tj = VSUB(Tg, Ti);
Chris@10 154 To = VADD(T2, T4);
Chris@10 155 Tp = VADD(Tg, Ti);
Chris@10 156 Tq = VSUB(To, Tp);
Chris@10 157 TI = VADD(To, Tp);
Chris@10 158 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 159 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 160 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 161 T8 = VCONJ(T7);
Chris@10 162 Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 163 Tb = VCONJ(Ta);
Chris@10 164 T9 = VSUB(T6, T8);
Chris@10 165 Td = VSUB(Tb, Tc);
Chris@10 166 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
Chris@10 167 Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
Chris@10 168 Tr = VADD(T6, T8);
Chris@10 169 Ts = VADD(Tb, Tc);
Chris@10 170 Tt = VBYI(VSUB(Tr, Ts));
Chris@10 171 TJ = VADD(Tr, Ts);
Chris@10 172 TP = VADD(TI, TJ);
Chris@10 173 Tn = LDW(&(W[TWVL * 10]));
Chris@10 174 Tu = VZMUL(Tn, VSUB(Tq, Tt));
Chris@10 175 Tf = VADD(T5, Te);
Chris@10 176 Tl = VBYI(VADD(Tj, Tk));
Chris@10 177 T1 = LDW(&(W[TWVL * 12]));
Chris@10 178 Tm = VZMULI(T1, VSUB(Tf, Tl));
Chris@10 179 TN = LDW(&(W[0]));
Chris@10 180 TO = VZMULI(TN, VADD(Tl, Tf));
Chris@10 181 Tv = VADD(Tm, Tu);
Chris@10 182 ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
Chris@10 183 TR = VCONJ(VSUB(TP, TO));
Chris@10 184 ST(&(Rm[0]), TR, -ms, &(Rm[0]));
Chris@10 185 Tw = VCONJ(VSUB(Tu, Tm));
Chris@10 186 ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
Chris@10 187 TQ = VADD(TO, TP);
Chris@10 188 ST(&(Rp[0]), TQ, ms, &(Rp[0]));
Chris@10 189 TB = LDW(&(W[TWVL * 2]));
Chris@10 190 TC = VZMUL(TB, VADD(Tq, Tt));
Chris@10 191 TH = LDW(&(W[TWVL * 6]));
Chris@10 192 TK = VZMUL(TH, VSUB(TI, TJ));
Chris@10 193 Ty = VBYI(VSUB(Tk, Tj));
Chris@10 194 Tz = VSUB(T5, Te);
Chris@10 195 Tx = LDW(&(W[TWVL * 4]));
Chris@10 196 TA = VZMULI(Tx, VADD(Ty, Tz));
Chris@10 197 TF = LDW(&(W[TWVL * 8]));
Chris@10 198 TG = VZMULI(TF, VSUB(Tz, Ty));
Chris@10 199 TD = VADD(TA, TC);
Chris@10 200 ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
Chris@10 201 TM = VCONJ(VSUB(TK, TG));
Chris@10 202 ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
Chris@10 203 TE = VCONJ(VSUB(TC, TA));
Chris@10 204 ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
Chris@10 205 TL = VADD(TG, TK);
Chris@10 206 ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
Chris@10 207 }
Chris@10 208 }
Chris@10 209 VLEAVE();
Chris@10 210 }
Chris@10 211
Chris@10 212 static const tw_instr twinstr[] = {
Chris@10 213 VTW(1, 1),
Chris@10 214 VTW(1, 2),
Chris@10 215 VTW(1, 3),
Chris@10 216 VTW(1, 4),
Chris@10 217 VTW(1, 5),
Chris@10 218 VTW(1, 6),
Chris@10 219 VTW(1, 7),
Chris@10 220 {TW_NEXT, VL, 0}
Chris@10 221 };
Chris@10 222
Chris@10 223 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} };
Chris@10 224
Chris@10 225 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
Chris@10 226 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
Chris@10 227 }
Chris@10 228 #endif /* HAVE_FMA */