annotate src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_6.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 29 FP additions, 24 FP multiplications,
Chris@10 32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add),
Chris@10 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cbv.h"
Chris@10 36
Chris@10 37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 44 V Tv, Tn, Tr, Te, T4, Tg, Ta, Tf, T7, T1, Td, T2, T3, T8, T9;
Chris@10 45 V T5, T6, Th, Tj, Tb, Tp, Tx, Ti, Tc, To, Tk, Ts, Tq, Tw, Tm;
Chris@10 46 V Tl, Tu, Tt, Tz, Ty;
Chris@10 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 49 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 50 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 51 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 52 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 53 Tv = LDW(&(W[0]));
Chris@10 54 Tn = LDW(&(W[TWVL * 8]));
Chris@10 55 Tr = LDW(&(W[TWVL * 6]));
Chris@10 56 Te = VFMACONJ(T3, T2);
Chris@10 57 T4 = VFNMSCONJ(T3, T2);
Chris@10 58 Tg = VFMACONJ(T9, T8);
Chris@10 59 Ta = VFMSCONJ(T9, T8);
Chris@10 60 Tf = VFMACONJ(T6, T5);
Chris@10 61 T7 = VFNMSCONJ(T6, T5);
Chris@10 62 T1 = LDW(&(W[TWVL * 4]));
Chris@10 63 Td = LDW(&(W[TWVL * 2]));
Chris@10 64 Th = VADD(Tf, Tg);
Chris@10 65 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
Chris@10 66 Tb = VADD(T7, Ta);
Chris@10 67 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
Chris@10 68 Tx = VADD(Te, Th);
Chris@10 69 Ti = VFNMS(LDK(KP500000000), Th, Te);
Chris@10 70 Tc = VZMULI(T1, VADD(T4, Tb));
Chris@10 71 To = VFNMS(LDK(KP500000000), Tb, T4);
Chris@10 72 Tk = VZMUL(Td, VFNMSI(Tj, Ti));
Chris@10 73 Ts = VZMUL(Tr, VFMAI(Tj, Ti));
Chris@10 74 Tq = VZMULI(Tn, VFNMSI(Tp, To));
Chris@10 75 Tw = VZMULI(Tv, VFMAI(Tp, To));
Chris@10 76 Tm = VCONJ(VSUB(Tk, Tc));
Chris@10 77 Tl = VADD(Tc, Tk);
Chris@10 78 Tu = VCONJ(VSUB(Ts, Tq));
Chris@10 79 Tt = VADD(Tq, Ts);
Chris@10 80 Tz = VCONJ(VSUB(Tx, Tw));
Chris@10 81 Ty = VADD(Tw, Tx);
Chris@10 82 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
Chris@10 83 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
Chris@10 84 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
Chris@10 85 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
Chris@10 86 ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
Chris@10 87 ST(&(Rp[0]), Ty, ms, &(Rp[0]));
Chris@10 88 }
Chris@10 89 }
Chris@10 90 VLEAVE();
Chris@10 91 }
Chris@10 92
Chris@10 93 static const tw_instr twinstr[] = {
Chris@10 94 VTW(1, 1),
Chris@10 95 VTW(1, 2),
Chris@10 96 VTW(1, 3),
Chris@10 97 VTW(1, 4),
Chris@10 98 VTW(1, 5),
Chris@10 99 {TW_NEXT, VL, 0}
Chris@10 100 };
Chris@10 101
Chris@10 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} };
Chris@10 103
Chris@10 104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
Chris@10 105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
Chris@10 106 }
Chris@10 107 #else /* HAVE_FMA */
Chris@10 108
Chris@10 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
Chris@10 110
Chris@10 111 /*
Chris@10 112 * This function contains 29 FP additions, 14 FP multiplications,
Chris@10 113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add),
Chris@10 114 * 41 stack variables, 2 constants, and 12 memory accesses
Chris@10 115 */
Chris@10 116 #include "hc2cbv.h"
Chris@10 117
Chris@10 118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 119 {
Chris@10 120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 122 {
Chris@10 123 INT m;
Chris@10 124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
Chris@10 126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
Chris@10 127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
Chris@10 128 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 130 T4 = VCONJ(T3);
Chris@10 131 T5 = VSUB(T2, T4);
Chris@10 132 Th = VADD(T2, T4);
Chris@10 133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 135 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 136 T8 = VCONJ(T7);
Chris@10 137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 138 Tb = VCONJ(Ta);
Chris@10 139 T9 = VSUB(T6, T8);
Chris@10 140 Td = VSUB(Tb, Tc);
Chris@10 141 Te = VADD(T9, Td);
Chris@10 142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
Chris@10 143 Ti = VADD(T6, T8);
Chris@10 144 Tj = VADD(Tb, Tc);
Chris@10 145 Tk = VADD(Ti, Tj);
Chris@10 146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
Chris@10 147 TA = VADD(Th, Tk);
Chris@10 148 T1 = LDW(&(W[TWVL * 4]));
Chris@10 149 Tf = VZMULI(T1, VADD(T5, Te));
Chris@10 150 Tl = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 151 Tg = LDW(&(W[TWVL * 2]));
Chris@10 152 Tn = VZMUL(Tg, VSUB(Tl, Tm));
Chris@10 153 Tu = LDW(&(W[TWVL * 6]));
Chris@10 154 Tv = VZMUL(Tu, VADD(Tm, Tl));
Chris@10 155 Tr = VFNMS(LDK(KP500000000), Te, T5);
Chris@10 156 Tq = LDW(&(W[TWVL * 8]));
Chris@10 157 Tt = VZMULI(Tq, VSUB(Tr, Ts));
Chris@10 158 Ty = LDW(&(W[0]));
Chris@10 159 Tz = VZMULI(Ty, VADD(Ts, Tr));
Chris@10 160 To = VADD(Tf, Tn);
Chris@10 161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
Chris@10 162 Tp = VCONJ(VSUB(Tn, Tf));
Chris@10 163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
Chris@10 164 TC = VCONJ(VSUB(TA, Tz));
Chris@10 165 ST(&(Rm[0]), TC, -ms, &(Rm[0]));
Chris@10 166 TB = VADD(Tz, TA);
Chris@10 167 ST(&(Rp[0]), TB, ms, &(Rp[0]));
Chris@10 168 Tx = VCONJ(VSUB(Tv, Tt));
Chris@10 169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
Chris@10 170 Tw = VADD(Tt, Tv);
Chris@10 171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
Chris@10 172 }
Chris@10 173 }
Chris@10 174 VLEAVE();
Chris@10 175 }
Chris@10 176
Chris@10 177 static const tw_instr twinstr[] = {
Chris@10 178 VTW(1, 1),
Chris@10 179 VTW(1, 2),
Chris@10 180 VTW(1, 3),
Chris@10 181 VTW(1, 4),
Chris@10 182 VTW(1, 5),
Chris@10 183 {TW_NEXT, VL, 0}
Chris@10 184 };
Chris@10 185
Chris@10 186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} };
Chris@10 187
Chris@10 188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
Chris@10 189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
Chris@10 190 }
Chris@10 191 #endif /* HAVE_FMA */