Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 29 FP additions, 24 FP multiplications,
|
Chris@10
|
32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add),
|
Chris@10
|
33 * 38 stack variables, 2 constants, and 12 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cbv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT m;
|
Chris@10
|
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
Chris@10
|
44 V Tv, Tn, Tr, Te, T4, Tg, Ta, Tf, T7, T1, Td, T2, T3, T8, T9;
|
Chris@10
|
45 V T5, T6, Th, Tj, Tb, Tp, Tx, Ti, Tc, To, Tk, Ts, Tq, Tw, Tm;
|
Chris@10
|
46 V Tl, Tu, Tt, Tz, Ty;
|
Chris@10
|
47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
49 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
50 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
51 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
52 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
53 Tv = LDW(&(W[0]));
|
Chris@10
|
54 Tn = LDW(&(W[TWVL * 8]));
|
Chris@10
|
55 Tr = LDW(&(W[TWVL * 6]));
|
Chris@10
|
56 Te = VFMACONJ(T3, T2);
|
Chris@10
|
57 T4 = VFNMSCONJ(T3, T2);
|
Chris@10
|
58 Tg = VFMACONJ(T9, T8);
|
Chris@10
|
59 Ta = VFMSCONJ(T9, T8);
|
Chris@10
|
60 Tf = VFMACONJ(T6, T5);
|
Chris@10
|
61 T7 = VFNMSCONJ(T6, T5);
|
Chris@10
|
62 T1 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
63 Td = LDW(&(W[TWVL * 2]));
|
Chris@10
|
64 Th = VADD(Tf, Tg);
|
Chris@10
|
65 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
|
Chris@10
|
66 Tb = VADD(T7, Ta);
|
Chris@10
|
67 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
|
Chris@10
|
68 Tx = VADD(Te, Th);
|
Chris@10
|
69 Ti = VFNMS(LDK(KP500000000), Th, Te);
|
Chris@10
|
70 Tc = VZMULI(T1, VADD(T4, Tb));
|
Chris@10
|
71 To = VFNMS(LDK(KP500000000), Tb, T4);
|
Chris@10
|
72 Tk = VZMUL(Td, VFNMSI(Tj, Ti));
|
Chris@10
|
73 Ts = VZMUL(Tr, VFMAI(Tj, Ti));
|
Chris@10
|
74 Tq = VZMULI(Tn, VFNMSI(Tp, To));
|
Chris@10
|
75 Tw = VZMULI(Tv, VFMAI(Tp, To));
|
Chris@10
|
76 Tm = VCONJ(VSUB(Tk, Tc));
|
Chris@10
|
77 Tl = VADD(Tc, Tk);
|
Chris@10
|
78 Tu = VCONJ(VSUB(Ts, Tq));
|
Chris@10
|
79 Tt = VADD(Tq, Ts);
|
Chris@10
|
80 Tz = VCONJ(VSUB(Tx, Tw));
|
Chris@10
|
81 Ty = VADD(Tw, Tx);
|
Chris@10
|
82 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
83 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
84 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
|
Chris@10
|
85 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
|
Chris@10
|
86 ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
|
Chris@10
|
87 ST(&(Rp[0]), Ty, ms, &(Rp[0]));
|
Chris@10
|
88 }
|
Chris@10
|
89 }
|
Chris@10
|
90 VLEAVE();
|
Chris@10
|
91 }
|
Chris@10
|
92
|
Chris@10
|
93 static const tw_instr twinstr[] = {
|
Chris@10
|
94 VTW(1, 1),
|
Chris@10
|
95 VTW(1, 2),
|
Chris@10
|
96 VTW(1, 3),
|
Chris@10
|
97 VTW(1, 4),
|
Chris@10
|
98 VTW(1, 5),
|
Chris@10
|
99 {TW_NEXT, VL, 0}
|
Chris@10
|
100 };
|
Chris@10
|
101
|
Chris@10
|
102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} };
|
Chris@10
|
103
|
Chris@10
|
104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
|
Chris@10
|
105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
|
Chris@10
|
106 }
|
Chris@10
|
107 #else /* HAVE_FMA */
|
Chris@10
|
108
|
Chris@10
|
109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
|
Chris@10
|
110
|
Chris@10
|
111 /*
|
Chris@10
|
112 * This function contains 29 FP additions, 14 FP multiplications,
|
Chris@10
|
113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add),
|
Chris@10
|
114 * 41 stack variables, 2 constants, and 12 memory accesses
|
Chris@10
|
115 */
|
Chris@10
|
116 #include "hc2cbv.h"
|
Chris@10
|
117
|
Chris@10
|
118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
119 {
|
Chris@10
|
120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
122 {
|
Chris@10
|
123 INT m;
|
Chris@10
|
124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
Chris@10
|
125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
|
Chris@10
|
126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
|
Chris@10
|
127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
|
Chris@10
|
128 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
130 T4 = VCONJ(T3);
|
Chris@10
|
131 T5 = VSUB(T2, T4);
|
Chris@10
|
132 Th = VADD(T2, T4);
|
Chris@10
|
133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
135 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
136 T8 = VCONJ(T7);
|
Chris@10
|
137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
138 Tb = VCONJ(Ta);
|
Chris@10
|
139 T9 = VSUB(T6, T8);
|
Chris@10
|
140 Td = VSUB(Tb, Tc);
|
Chris@10
|
141 Te = VADD(T9, Td);
|
Chris@10
|
142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
|
Chris@10
|
143 Ti = VADD(T6, T8);
|
Chris@10
|
144 Tj = VADD(Tb, Tc);
|
Chris@10
|
145 Tk = VADD(Ti, Tj);
|
Chris@10
|
146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
|
Chris@10
|
147 TA = VADD(Th, Tk);
|
Chris@10
|
148 T1 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
149 Tf = VZMULI(T1, VADD(T5, Te));
|
Chris@10
|
150 Tl = VFNMS(LDK(KP500000000), Tk, Th);
|
Chris@10
|
151 Tg = LDW(&(W[TWVL * 2]));
|
Chris@10
|
152 Tn = VZMUL(Tg, VSUB(Tl, Tm));
|
Chris@10
|
153 Tu = LDW(&(W[TWVL * 6]));
|
Chris@10
|
154 Tv = VZMUL(Tu, VADD(Tm, Tl));
|
Chris@10
|
155 Tr = VFNMS(LDK(KP500000000), Te, T5);
|
Chris@10
|
156 Tq = LDW(&(W[TWVL * 8]));
|
Chris@10
|
157 Tt = VZMULI(Tq, VSUB(Tr, Ts));
|
Chris@10
|
158 Ty = LDW(&(W[0]));
|
Chris@10
|
159 Tz = VZMULI(Ty, VADD(Ts, Tr));
|
Chris@10
|
160 To = VADD(Tf, Tn);
|
Chris@10
|
161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
162 Tp = VCONJ(VSUB(Tn, Tf));
|
Chris@10
|
163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
164 TC = VCONJ(VSUB(TA, Tz));
|
Chris@10
|
165 ST(&(Rm[0]), TC, -ms, &(Rm[0]));
|
Chris@10
|
166 TB = VADD(Tz, TA);
|
Chris@10
|
167 ST(&(Rp[0]), TB, ms, &(Rp[0]));
|
Chris@10
|
168 Tx = VCONJ(VSUB(Tv, Tt));
|
Chris@10
|
169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
|
Chris@10
|
170 Tw = VADD(Tt, Tv);
|
Chris@10
|
171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
|
Chris@10
|
172 }
|
Chris@10
|
173 }
|
Chris@10
|
174 VLEAVE();
|
Chris@10
|
175 }
|
Chris@10
|
176
|
Chris@10
|
177 static const tw_instr twinstr[] = {
|
Chris@10
|
178 VTW(1, 1),
|
Chris@10
|
179 VTW(1, 2),
|
Chris@10
|
180 VTW(1, 3),
|
Chris@10
|
181 VTW(1, 4),
|
Chris@10
|
182 VTW(1, 5),
|
Chris@10
|
183 {TW_NEXT, VL, 0}
|
Chris@10
|
184 };
|
Chris@10
|
185
|
Chris@10
|
186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} };
|
Chris@10
|
187
|
Chris@10
|
188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
|
Chris@10
|
189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
|
Chris@10
|
190 }
|
Chris@10
|
191 #endif /* HAVE_FMA */
|