Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include hc2cbv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 15 FP additions, 12 FP multiplications,
|
Chris@10
|
32 * (or, 9 additions, 6 multiplications, 6 fused multiply/add),
|
Chris@10
|
33 * 20 stack variables, 0 constants, and 8 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cbv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 {
|
Chris@10
|
40 INT m;
|
Chris@10
|
41 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
42 V T2, T3, T5, T6, Tf, T1, T9, Ta, T4, Tb, T7, Tc, Th, T8, Tg;
|
Chris@10
|
43 V Te, Td, Ti, Tj;
|
Chris@10
|
44 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
45 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
46 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
47 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
48 Tf = LDW(&(W[0]));
|
Chris@10
|
49 T1 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
50 T9 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
51 Ta = VFMACONJ(T3, T2);
|
Chris@10
|
52 T4 = VFNMSCONJ(T3, T2);
|
Chris@10
|
53 Tb = VFMACONJ(T6, T5);
|
Chris@10
|
54 T7 = VFNMSCONJ(T6, T5);
|
Chris@10
|
55 Tc = VZMUL(T9, VSUB(Ta, Tb));
|
Chris@10
|
56 Th = VADD(Ta, Tb);
|
Chris@10
|
57 T8 = VZMULI(T1, VFNMSI(T7, T4));
|
Chris@10
|
58 Tg = VZMULI(Tf, VFMAI(T7, T4));
|
Chris@10
|
59 Te = VCONJ(VSUB(Tc, T8));
|
Chris@10
|
60 Td = VADD(T8, Tc);
|
Chris@10
|
61 Ti = VADD(Tg, Th);
|
Chris@10
|
62 Tj = VCONJ(VSUB(Th, Tg));
|
Chris@10
|
63 ST(&(Rm[WS(rs, 1)]), Te, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
64 ST(&(Rp[WS(rs, 1)]), Td, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
65 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
|
Chris@10
|
66 ST(&(Rm[0]), Tj, -ms, &(Rm[0]));
|
Chris@10
|
67 }
|
Chris@10
|
68 }
|
Chris@10
|
69 VLEAVE();
|
Chris@10
|
70 }
|
Chris@10
|
71
|
Chris@10
|
72 static const tw_instr twinstr[] = {
|
Chris@10
|
73 VTW(1, 1),
|
Chris@10
|
74 VTW(1, 2),
|
Chris@10
|
75 VTW(1, 3),
|
Chris@10
|
76 {TW_NEXT, VL, 0}
|
Chris@10
|
77 };
|
Chris@10
|
78
|
Chris@10
|
79 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {9, 6, 6, 0} };
|
Chris@10
|
80
|
Chris@10
|
81 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
|
Chris@10
|
82 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
|
Chris@10
|
83 }
|
Chris@10
|
84 #else /* HAVE_FMA */
|
Chris@10
|
85
|
Chris@10
|
86 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include hc2cbv.h */
|
Chris@10
|
87
|
Chris@10
|
88 /*
|
Chris@10
|
89 * This function contains 15 FP additions, 6 FP multiplications,
|
Chris@10
|
90 * (or, 15 additions, 6 multiplications, 0 fused multiply/add),
|
Chris@10
|
91 * 22 stack variables, 0 constants, and 8 memory accesses
|
Chris@10
|
92 */
|
Chris@10
|
93 #include "hc2cbv.h"
|
Chris@10
|
94
|
Chris@10
|
95 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
96 {
|
Chris@10
|
97 {
|
Chris@10
|
98 INT m;
|
Chris@10
|
99 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
100 V T5, Tc, T9, Td, T2, T4, T3, T6, T8, T7, Tj, Ti, Th, Tk, Tl;
|
Chris@10
|
101 V Ta, Te, T1, Tb, Tf, Tg;
|
Chris@10
|
102 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
103 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
104 T4 = VCONJ(T3);
|
Chris@10
|
105 T5 = VSUB(T2, T4);
|
Chris@10
|
106 Tc = VADD(T2, T4);
|
Chris@10
|
107 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
108 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
109 T8 = VCONJ(T7);
|
Chris@10
|
110 T9 = VBYI(VSUB(T6, T8));
|
Chris@10
|
111 Td = VADD(T6, T8);
|
Chris@10
|
112 Tj = VADD(Tc, Td);
|
Chris@10
|
113 Th = LDW(&(W[0]));
|
Chris@10
|
114 Ti = VZMULI(Th, VADD(T5, T9));
|
Chris@10
|
115 Tk = VADD(Ti, Tj);
|
Chris@10
|
116 ST(&(Rp[0]), Tk, ms, &(Rp[0]));
|
Chris@10
|
117 Tl = VCONJ(VSUB(Tj, Ti));
|
Chris@10
|
118 ST(&(Rm[0]), Tl, -ms, &(Rm[0]));
|
Chris@10
|
119 T1 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
120 Ta = VZMULI(T1, VSUB(T5, T9));
|
Chris@10
|
121 Tb = LDW(&(W[TWVL * 2]));
|
Chris@10
|
122 Te = VZMUL(Tb, VSUB(Tc, Td));
|
Chris@10
|
123 Tf = VADD(Ta, Te);
|
Chris@10
|
124 ST(&(Rp[WS(rs, 1)]), Tf, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
125 Tg = VCONJ(VSUB(Te, Ta));
|
Chris@10
|
126 ST(&(Rm[WS(rs, 1)]), Tg, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
127 }
|
Chris@10
|
128 }
|
Chris@10
|
129 VLEAVE();
|
Chris@10
|
130 }
|
Chris@10
|
131
|
Chris@10
|
132 static const tw_instr twinstr[] = {
|
Chris@10
|
133 VTW(1, 1),
|
Chris@10
|
134 VTW(1, 2),
|
Chris@10
|
135 VTW(1, 3),
|
Chris@10
|
136 {TW_NEXT, VL, 0}
|
Chris@10
|
137 };
|
Chris@10
|
138
|
Chris@10
|
139 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {15, 6, 0, 0} };
|
Chris@10
|
140
|
Chris@10
|
141 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
|
Chris@10
|
142 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
|
Chris@10
|
143 }
|
Chris@10
|
144 #endif /* HAVE_FMA */
|