Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:30 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 20 -dif -sign 1 -name hc2cbdftv_20 -include hc2cbv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 143 FP additions, 108 FP multiplications,
|
Chris@10
|
32 * (or, 77 additions, 42 multiplications, 66 fused multiply/add),
|
Chris@10
|
33 * 134 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cbv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cbdftv_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 38)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(80, rs)) {
|
Chris@10
|
46 V T1M, T1T, T4, TF, T12, Te, T16, Ts, Tb, TN, TA, TG, TU, T1Y, T11;
|
Chris@10
|
47 V T1e, T29, T21, T15, Th, T13, Tp;
|
Chris@10
|
48 {
|
Chris@10
|
49 V TS, TT, Tf, T10, T20, T1Z, TX, Tg, Tn, To, T2, T3, TD, TE, T8;
|
Chris@10
|
50 V TV, T7, TZ, Tz, T9, Tu, Tv, T5, T6, Tx, Ty, Tc, Td, Tq, Tr;
|
Chris@10
|
51 V TY, Ta, TW, Tw;
|
Chris@10
|
52 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
53 T3 = LD(&(Rm[WS(rs, 9)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
54 TD = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
55 TE = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
56 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
57 T6 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
58 Tx = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
59 Ty = LD(&(Rm[WS(rs, 8)]), -ms, &(Rm[0]));
|
Chris@10
|
60 T8 = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
|
Chris@10
|
61 TS = VFMACONJ(T3, T2);
|
Chris@10
|
62 T4 = VFNMSCONJ(T3, T2);
|
Chris@10
|
63 TT = VFMACONJ(TE, TD);
|
Chris@10
|
64 TF = VFNMSCONJ(TE, TD);
|
Chris@10
|
65 TV = VFMACONJ(T6, T5);
|
Chris@10
|
66 T7 = VFNMSCONJ(T6, T5);
|
Chris@10
|
67 TZ = VFMACONJ(Ty, Tx);
|
Chris@10
|
68 Tz = VFNMSCONJ(Ty, Tx);
|
Chris@10
|
69 T9 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
70 Tu = LD(&(Rp[WS(rs, 9)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
71 Tv = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
72 Tc = LD(&(Rp[WS(rs, 8)]), ms, &(Rp[0]));
|
Chris@10
|
73 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
74 Tq = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
75 Tr = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
76 Tf = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
77 TY = VFMACONJ(T9, T8);
|
Chris@10
|
78 Ta = VFMSCONJ(T9, T8);
|
Chris@10
|
79 TW = VFMACONJ(Tv, Tu);
|
Chris@10
|
80 Tw = VFNMSCONJ(Tv, Tu);
|
Chris@10
|
81 T12 = VFMACONJ(Td, Tc);
|
Chris@10
|
82 Te = VFNMSCONJ(Td, Tc);
|
Chris@10
|
83 T16 = VFMACONJ(Tr, Tq);
|
Chris@10
|
84 Ts = VFMSCONJ(Tr, Tq);
|
Chris@10
|
85 T10 = VSUB(TY, TZ);
|
Chris@10
|
86 T20 = VADD(TY, TZ);
|
Chris@10
|
87 Tb = VADD(T7, Ta);
|
Chris@10
|
88 TN = VSUB(T7, Ta);
|
Chris@10
|
89 T1Z = VADD(TV, TW);
|
Chris@10
|
90 TX = VSUB(TV, TW);
|
Chris@10
|
91 TA = VSUB(Tw, Tz);
|
Chris@10
|
92 TG = VADD(Tw, Tz);
|
Chris@10
|
93 Tg = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
94 Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
95 To = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
|
Chris@10
|
96 TU = VSUB(TS, TT);
|
Chris@10
|
97 T1Y = VADD(TS, TT);
|
Chris@10
|
98 T11 = VADD(TX, T10);
|
Chris@10
|
99 T1e = VSUB(TX, T10);
|
Chris@10
|
100 T29 = VSUB(T1Z, T20);
|
Chris@10
|
101 T21 = VADD(T1Z, T20);
|
Chris@10
|
102 T15 = VFMACONJ(Tg, Tf);
|
Chris@10
|
103 Th = VFMSCONJ(Tg, Tf);
|
Chris@10
|
104 T13 = VFMACONJ(To, Tn);
|
Chris@10
|
105 Tp = VFMSCONJ(To, Tn);
|
Chris@10
|
106 }
|
Chris@10
|
107 {
|
Chris@10
|
108 V T1S, T2B, T1W, T1I, T2q, T2w, T2i, T2c, T1C, T1K, T1s, T1g, T1, T2t, T1v;
|
Chris@10
|
109 V T1Q, T2A, T1q, T2m, TC, T1w, TP, T1x, T2f, T2r, T2g, T1E, T1D, T2y, T2x;
|
Chris@10
|
110 V T1i, T1h, T2D, T2C, T2s, T1t, T1u, T1y, T2u, TQ, T2d, T2e, T1U, T1L, T2j;
|
Chris@10
|
111 V T2k;
|
Chris@10
|
112 {
|
Chris@10
|
113 V T1R, T1F, T1V, T1o, TO, Tl, T1d, T2a, T1l, TB, TK, T1G, Tk, T1b, T19;
|
Chris@10
|
114 V T27, T25, T1H, TJ, T17, T23, TM, Ti, T14, T22, Tt, TH, Tj, T18, T24;
|
Chris@10
|
115 V TI, T2b, T2p, T1X, T2v, T2h, T2n, T1B, T1f, T28, T2o, T1a, TR, T1J, T1r;
|
Chris@10
|
116 V T1z, T26, Tm, TL, T1O, T1m, T1j, T2z, T1N, T1p, T1P, T2l, T1c, T1A, T1n;
|
Chris@10
|
117 V T1k;
|
Chris@10
|
118 T1R = LDW(&(W[TWVL * 18]));
|
Chris@10
|
119 T17 = VSUB(T15, T16);
|
Chris@10
|
120 T23 = VADD(T15, T16);
|
Chris@10
|
121 TM = VSUB(Te, Th);
|
Chris@10
|
122 Ti = VADD(Te, Th);
|
Chris@10
|
123 T14 = VSUB(T12, T13);
|
Chris@10
|
124 T22 = VADD(T12, T13);
|
Chris@10
|
125 Tt = VSUB(Tp, Ts);
|
Chris@10
|
126 TH = VADD(Tp, Ts);
|
Chris@10
|
127 T1F = LDW(&(W[TWVL * 28]));
|
Chris@10
|
128 T1V = LDW(&(W[TWVL * 8]));
|
Chris@10
|
129 T1o = VFMA(LDK(KP618033988), TM, TN);
|
Chris@10
|
130 TO = VFNMS(LDK(KP618033988), TN, TM);
|
Chris@10
|
131 Tj = VADD(Tb, Ti);
|
Chris@10
|
132 Tl = VSUB(Tb, Ti);
|
Chris@10
|
133 T18 = VADD(T14, T17);
|
Chris@10
|
134 T1d = VSUB(T14, T17);
|
Chris@10
|
135 T24 = VADD(T22, T23);
|
Chris@10
|
136 T2a = VSUB(T22, T23);
|
Chris@10
|
137 T1l = VFMA(LDK(KP618033988), Tt, TA);
|
Chris@10
|
138 TB = VFNMS(LDK(KP618033988), TA, Tt);
|
Chris@10
|
139 TI = VADD(TG, TH);
|
Chris@10
|
140 TK = VSUB(TG, TH);
|
Chris@10
|
141 T1G = VADD(T4, Tj);
|
Chris@10
|
142 Tk = VFNMS(LDK(KP250000000), Tj, T4);
|
Chris@10
|
143 T1b = VSUB(T11, T18);
|
Chris@10
|
144 T19 = VADD(T11, T18);
|
Chris@10
|
145 T27 = VSUB(T21, T24);
|
Chris@10
|
146 T25 = VADD(T21, T24);
|
Chris@10
|
147 T1H = VADD(TF, TI);
|
Chris@10
|
148 TJ = VFNMS(LDK(KP250000000), TI, TF);
|
Chris@10
|
149 T2b = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2a, T29));
|
Chris@10
|
150 T2p = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T29, T2a));
|
Chris@10
|
151 T1X = LDW(&(W[TWVL * 6]));
|
Chris@10
|
152 T1S = VZMUL(T1R, VADD(TU, T19));
|
Chris@10
|
153 T2v = LDW(&(W[TWVL * 22]));
|
Chris@10
|
154 T2B = VADD(T1Y, T25);
|
Chris@10
|
155 T26 = VFNMS(LDK(KP250000000), T25, T1Y);
|
Chris@10
|
156 T1W = VZMULI(T1V, VFMAI(T1H, T1G));
|
Chris@10
|
157 T1I = VZMULI(T1F, VFNMSI(T1H, T1G));
|
Chris@10
|
158 T2h = LDW(&(W[TWVL * 30]));
|
Chris@10
|
159 T2n = LDW(&(W[TWVL * 14]));
|
Chris@10
|
160 T1B = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1d, T1e));
|
Chris@10
|
161 T1f = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1e, T1d));
|
Chris@10
|
162 T28 = VFMA(LDK(KP559016994), T27, T26);
|
Chris@10
|
163 T2o = VFNMS(LDK(KP559016994), T27, T26);
|
Chris@10
|
164 T1a = VFNMS(LDK(KP250000000), T19, TU);
|
Chris@10
|
165 TR = LDW(&(W[TWVL * 2]));
|
Chris@10
|
166 T1J = LDW(&(W[TWVL * 26]));
|
Chris@10
|
167 T1r = LDW(&(W[TWVL * 34]));
|
Chris@10
|
168 T1z = LDW(&(W[TWVL * 10]));
|
Chris@10
|
169 T1k = VFMA(LDK(KP559016994), Tl, Tk);
|
Chris@10
|
170 Tm = VFNMS(LDK(KP559016994), Tl, Tk);
|
Chris@10
|
171 T2q = VZMUL(T2n, VFMAI(T2p, T2o));
|
Chris@10
|
172 T2w = VZMUL(T2v, VFNMSI(T2p, T2o));
|
Chris@10
|
173 T2i = VZMUL(T2h, VFMAI(T2b, T28));
|
Chris@10
|
174 T2c = VZMUL(T1X, VFNMSI(T2b, T28));
|
Chris@10
|
175 T1c = VFNMS(LDK(KP559016994), T1b, T1a);
|
Chris@10
|
176 T1A = VFMA(LDK(KP559016994), T1b, T1a);
|
Chris@10
|
177 TL = VFNMS(LDK(KP559016994), TK, TJ);
|
Chris@10
|
178 T1n = VFMA(LDK(KP559016994), TK, TJ);
|
Chris@10
|
179 T1O = VFMA(LDK(KP951056516), T1l, T1k);
|
Chris@10
|
180 T1m = VFNMS(LDK(KP951056516), T1l, T1k);
|
Chris@10
|
181 T1j = LDW(&(W[TWVL * 36]));
|
Chris@10
|
182 T2z = LDW(&(W[0]));
|
Chris@10
|
183 T1N = LDW(&(W[TWVL * 20]));
|
Chris@10
|
184 T1C = VZMUL(T1z, VFMAI(T1B, T1A));
|
Chris@10
|
185 T1K = VZMUL(T1J, VFNMSI(T1B, T1A));
|
Chris@10
|
186 T1s = VZMUL(T1r, VFMAI(T1f, T1c));
|
Chris@10
|
187 T1g = VZMUL(TR, VFNMSI(T1f, T1c));
|
Chris@10
|
188 T1p = VFMA(LDK(KP951056516), T1o, T1n);
|
Chris@10
|
189 T1P = VFNMS(LDK(KP951056516), T1o, T1n);
|
Chris@10
|
190 T2l = LDW(&(W[TWVL * 16]));
|
Chris@10
|
191 T1 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
192 T2t = LDW(&(W[TWVL * 24]));
|
Chris@10
|
193 T1v = LDW(&(W[TWVL * 12]));
|
Chris@10
|
194 T1Q = VZMULI(T1N, VFNMSI(T1P, T1O));
|
Chris@10
|
195 T2A = VZMULI(T2z, VFMAI(T1p, T1m));
|
Chris@10
|
196 T1q = VZMULI(T1j, VFNMSI(T1p, T1m));
|
Chris@10
|
197 T2m = VZMULI(T2l, VFMAI(T1P, T1O));
|
Chris@10
|
198 TC = VFMA(LDK(KP951056516), TB, Tm);
|
Chris@10
|
199 T1w = VFNMS(LDK(KP951056516), TB, Tm);
|
Chris@10
|
200 TP = VFNMS(LDK(KP951056516), TO, TL);
|
Chris@10
|
201 T1x = VFMA(LDK(KP951056516), TO, TL);
|
Chris@10
|
202 T2f = LDW(&(W[TWVL * 32]));
|
Chris@10
|
203 }
|
Chris@10
|
204 T2D = VCONJ(VSUB(T2B, T2A));
|
Chris@10
|
205 T2C = VADD(T2A, T2B);
|
Chris@10
|
206 T2s = VCONJ(VSUB(T2q, T2m));
|
Chris@10
|
207 T2r = VADD(T2m, T2q);
|
Chris@10
|
208 T1t = VADD(T1q, T1s);
|
Chris@10
|
209 T1u = VCONJ(VSUB(T1s, T1q));
|
Chris@10
|
210 T1y = VZMULI(T1v, VFNMSI(T1x, T1w));
|
Chris@10
|
211 T2u = VZMULI(T2t, VFMAI(T1x, T1w));
|
Chris@10
|
212 TQ = VZMULI(T1, VFNMSI(TP, TC));
|
Chris@10
|
213 T2g = VZMULI(T2f, VFMAI(TP, TC));
|
Chris@10
|
214 ST(&(Rm[0]), T2D, -ms, &(Rm[0]));
|
Chris@10
|
215 ST(&(Rp[0]), T2C, ms, &(Rp[0]));
|
Chris@10
|
216 ST(&(Rm[WS(rs, 4)]), T2s, -ms, &(Rm[0]));
|
Chris@10
|
217 ST(&(Rm[WS(rs, 9)]), T1u, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
218 T1E = VCONJ(VSUB(T1C, T1y));
|
Chris@10
|
219 T1D = VADD(T1y, T1C);
|
Chris@10
|
220 T2y = VCONJ(VSUB(T2w, T2u));
|
Chris@10
|
221 T2x = VADD(T2u, T2w);
|
Chris@10
|
222 T1i = VCONJ(VSUB(T1g, TQ));
|
Chris@10
|
223 T1h = VADD(TQ, T1g);
|
Chris@10
|
224 ST(&(Rp[WS(rs, 9)]), T1t, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
225 T1L = VADD(T1I, T1K);
|
Chris@10
|
226 T1M = VCONJ(VSUB(T1K, T1I));
|
Chris@10
|
227 ST(&(Rp[WS(rs, 3)]), T1D, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
228 ST(&(Rm[WS(rs, 6)]), T2y, -ms, &(Rm[0]));
|
Chris@10
|
229 ST(&(Rp[WS(rs, 6)]), T2x, ms, &(Rp[0]));
|
Chris@10
|
230 ST(&(Rm[WS(rs, 1)]), T1i, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
231 ST(&(Rp[WS(rs, 1)]), T1h, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
232 T2d = VADD(T1W, T2c);
|
Chris@10
|
233 T2e = VCONJ(VSUB(T2c, T1W));
|
Chris@10
|
234 ST(&(Rm[WS(rs, 3)]), T1E, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
235 ST(&(Rp[WS(rs, 7)]), T1L, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
236 T1U = VCONJ(VSUB(T1S, T1Q));
|
Chris@10
|
237 T1T = VADD(T1Q, T1S);
|
Chris@10
|
238 T2j = VADD(T2g, T2i);
|
Chris@10
|
239 T2k = VCONJ(VSUB(T2i, T2g));
|
Chris@10
|
240 ST(&(Rp[WS(rs, 2)]), T2d, ms, &(Rp[0]));
|
Chris@10
|
241 ST(&(Rp[WS(rs, 4)]), T2r, ms, &(Rp[0]));
|
Chris@10
|
242 ST(&(Rm[WS(rs, 5)]), T1U, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
243 ST(&(Rm[WS(rs, 2)]), T2e, -ms, &(Rm[0]));
|
Chris@10
|
244 ST(&(Rp[WS(rs, 8)]), T2j, ms, &(Rp[0]));
|
Chris@10
|
245 ST(&(Rm[WS(rs, 8)]), T2k, -ms, &(Rm[0]));
|
Chris@10
|
246 }
|
Chris@10
|
247 ST(&(Rp[WS(rs, 5)]), T1T, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
248 ST(&(Rm[WS(rs, 7)]), T1M, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
249 }
|
Chris@10
|
250 }
|
Chris@10
|
251 VLEAVE();
|
Chris@10
|
252 }
|
Chris@10
|
253
|
Chris@10
|
254 static const tw_instr twinstr[] = {
|
Chris@10
|
255 VTW(1, 1),
|
Chris@10
|
256 VTW(1, 2),
|
Chris@10
|
257 VTW(1, 3),
|
Chris@10
|
258 VTW(1, 4),
|
Chris@10
|
259 VTW(1, 5),
|
Chris@10
|
260 VTW(1, 6),
|
Chris@10
|
261 VTW(1, 7),
|
Chris@10
|
262 VTW(1, 8),
|
Chris@10
|
263 VTW(1, 9),
|
Chris@10
|
264 VTW(1, 10),
|
Chris@10
|
265 VTW(1, 11),
|
Chris@10
|
266 VTW(1, 12),
|
Chris@10
|
267 VTW(1, 13),
|
Chris@10
|
268 VTW(1, 14),
|
Chris@10
|
269 VTW(1, 15),
|
Chris@10
|
270 VTW(1, 16),
|
Chris@10
|
271 VTW(1, 17),
|
Chris@10
|
272 VTW(1, 18),
|
Chris@10
|
273 VTW(1, 19),
|
Chris@10
|
274 {TW_NEXT, VL, 0}
|
Chris@10
|
275 };
|
Chris@10
|
276
|
Chris@10
|
277 static const hc2c_desc desc = { 20, XSIMD_STRING("hc2cbdftv_20"), twinstr, &GENUS, {77, 42, 66, 0} };
|
Chris@10
|
278
|
Chris@10
|
279 void XSIMD(codelet_hc2cbdftv_20) (planner *p) {
|
Chris@10
|
280 X(khc2c_register) (p, hc2cbdftv_20, &desc, HC2C_VIA_DFT);
|
Chris@10
|
281 }
|
Chris@10
|
282 #else /* HAVE_FMA */
|
Chris@10
|
283
|
Chris@10
|
284 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 20 -dif -sign 1 -name hc2cbdftv_20 -include hc2cbv.h */
|
Chris@10
|
285
|
Chris@10
|
286 /*
|
Chris@10
|
287 * This function contains 143 FP additions, 62 FP multiplications,
|
Chris@10
|
288 * (or, 131 additions, 50 multiplications, 12 fused multiply/add),
|
Chris@10
|
289 * 114 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
290 */
|
Chris@10
|
291 #include "hc2cbv.h"
|
Chris@10
|
292
|
Chris@10
|
293 static void hc2cbdftv_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
294 {
|
Chris@10
|
295 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
296 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
297 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
298 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
299 {
|
Chris@10
|
300 INT m;
|
Chris@10
|
301 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 38)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(80, rs)) {
|
Chris@10
|
302 V TK, T1v, TY, T1x, T1j, T2f, TS, TT, TO, TU, T5, To, Tp, Tq, T2a;
|
Chris@10
|
303 V T2d, T2g, T2k, T2j, T1k, T1l, T18, T1m, T1f;
|
Chris@10
|
304 {
|
Chris@10
|
305 V T2, TP, T4, TR, TI, T1d, T9, T12, Td, T15, TE, T1a, Tv, T13, Tm;
|
Chris@10
|
306 V T1c, Tz, T16, Ti, T19, T3, TQ, TH, TG, TF, T6, T8, T7, Tc, Tb;
|
Chris@10
|
307 V Ta, TD, TC, TB, Ts, Tu, Tt, Tl, Tk, Tj, Tw, Ty, Tx, Tf, Th;
|
Chris@10
|
308 V Tg, TA, TJ, TW, TX, T1h, T1i, TM, TN, Te, Tn, T28, T29, T2b, T2c;
|
Chris@10
|
309 V T14, T17, T1b, T1e;
|
Chris@10
|
310 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
311 TP = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
312 T3 = LD(&(Rm[WS(rs, 9)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
313 T4 = VCONJ(T3);
|
Chris@10
|
314 TQ = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
315 TR = VCONJ(TQ);
|
Chris@10
|
316 TH = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
317 TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
318 TG = VCONJ(TF);
|
Chris@10
|
319 TI = VSUB(TG, TH);
|
Chris@10
|
320 T1d = VADD(TG, TH);
|
Chris@10
|
321 T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
322 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
323 T8 = VCONJ(T7);
|
Chris@10
|
324 T9 = VSUB(T6, T8);
|
Chris@10
|
325 T12 = VADD(T6, T8);
|
Chris@10
|
326 Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
|
Chris@10
|
327 Ta = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
328 Tb = VCONJ(Ta);
|
Chris@10
|
329 Td = VSUB(Tb, Tc);
|
Chris@10
|
330 T15 = VADD(Tb, Tc);
|
Chris@10
|
331 TD = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
332 TB = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
|
Chris@10
|
333 TC = VCONJ(TB);
|
Chris@10
|
334 TE = VSUB(TC, TD);
|
Chris@10
|
335 T1a = VADD(TC, TD);
|
Chris@10
|
336 Ts = LD(&(Rp[WS(rs, 9)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
337 Tt = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
338 Tu = VCONJ(Tt);
|
Chris@10
|
339 Tv = VSUB(Ts, Tu);
|
Chris@10
|
340 T13 = VADD(Ts, Tu);
|
Chris@10
|
341 Tl = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
342 Tj = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
343 Tk = VCONJ(Tj);
|
Chris@10
|
344 Tm = VSUB(Tk, Tl);
|
Chris@10
|
345 T1c = VADD(Tk, Tl);
|
Chris@10
|
346 Tw = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
347 Tx = LD(&(Rm[WS(rs, 8)]), -ms, &(Rm[0]));
|
Chris@10
|
348 Ty = VCONJ(Tx);
|
Chris@10
|
349 Tz = VSUB(Tw, Ty);
|
Chris@10
|
350 T16 = VADD(Tw, Ty);
|
Chris@10
|
351 Tf = LD(&(Rp[WS(rs, 8)]), ms, &(Rp[0]));
|
Chris@10
|
352 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
353 Th = VCONJ(Tg);
|
Chris@10
|
354 Ti = VSUB(Tf, Th);
|
Chris@10
|
355 T19 = VADD(Tf, Th);
|
Chris@10
|
356 TA = VSUB(Tv, Tz);
|
Chris@10
|
357 TJ = VSUB(TE, TI);
|
Chris@10
|
358 TK = VFNMS(LDK(KP951056516), TJ, VMUL(LDK(KP587785252), TA));
|
Chris@10
|
359 T1v = VFMA(LDK(KP951056516), TA, VMUL(LDK(KP587785252), TJ));
|
Chris@10
|
360 TW = VSUB(T9, Td);
|
Chris@10
|
361 TX = VSUB(Ti, Tm);
|
Chris@10
|
362 TY = VFNMS(LDK(KP951056516), TX, VMUL(LDK(KP587785252), TW));
|
Chris@10
|
363 T1x = VFMA(LDK(KP951056516), TW, VMUL(LDK(KP587785252), TX));
|
Chris@10
|
364 T1h = VADD(T2, T4);
|
Chris@10
|
365 T1i = VADD(TP, TR);
|
Chris@10
|
366 T1j = VSUB(T1h, T1i);
|
Chris@10
|
367 T2f = VADD(T1h, T1i);
|
Chris@10
|
368 TS = VSUB(TP, TR);
|
Chris@10
|
369 TM = VADD(Tv, Tz);
|
Chris@10
|
370 TN = VADD(TE, TI);
|
Chris@10
|
371 TT = VADD(TM, TN);
|
Chris@10
|
372 TO = VMUL(LDK(KP559016994), VSUB(TM, TN));
|
Chris@10
|
373 TU = VFNMS(LDK(KP250000000), TT, TS);
|
Chris@10
|
374 T5 = VSUB(T2, T4);
|
Chris@10
|
375 Te = VADD(T9, Td);
|
Chris@10
|
376 Tn = VADD(Ti, Tm);
|
Chris@10
|
377 To = VADD(Te, Tn);
|
Chris@10
|
378 Tp = VFNMS(LDK(KP250000000), To, T5);
|
Chris@10
|
379 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
|
Chris@10
|
380 T28 = VADD(T12, T13);
|
Chris@10
|
381 T29 = VADD(T15, T16);
|
Chris@10
|
382 T2a = VADD(T28, T29);
|
Chris@10
|
383 T2b = VADD(T19, T1a);
|
Chris@10
|
384 T2c = VADD(T1c, T1d);
|
Chris@10
|
385 T2d = VADD(T2b, T2c);
|
Chris@10
|
386 T2g = VADD(T2a, T2d);
|
Chris@10
|
387 T2k = VSUB(T2b, T2c);
|
Chris@10
|
388 T2j = VSUB(T28, T29);
|
Chris@10
|
389 T14 = VSUB(T12, T13);
|
Chris@10
|
390 T17 = VSUB(T15, T16);
|
Chris@10
|
391 T1k = VADD(T14, T17);
|
Chris@10
|
392 T1b = VSUB(T19, T1a);
|
Chris@10
|
393 T1e = VSUB(T1c, T1d);
|
Chris@10
|
394 T1l = VADD(T1b, T1e);
|
Chris@10
|
395 T18 = VSUB(T14, T17);
|
Chris@10
|
396 T1m = VADD(T1k, T1l);
|
Chris@10
|
397 T1f = VSUB(T1b, T1e);
|
Chris@10
|
398 }
|
Chris@10
|
399 {
|
Chris@10
|
400 V T2L, T22, T1S, T26, T2m, T2G, T2s, T2A, T1q, T1U, T1C, T1M, T10, T2E, T1I;
|
Chris@10
|
401 V T2q, T1A, T2K, T20, T2w, T21, T1Q, T1R, T1P, T25, T1r, T1s, T2C, T2N, T1N;
|
Chris@10
|
402 V T2H, T2I, T2M, T1E, T1D, T1O, T1V, T2n, T2B, T24, T2o, T2t, T2u, T23, T1W;
|
Chris@10
|
403 T2L = VADD(T2f, T2g);
|
Chris@10
|
404 T21 = LDW(&(W[TWVL * 18]));
|
Chris@10
|
405 T22 = VZMUL(T21, VADD(T1j, T1m));
|
Chris@10
|
406 T1Q = VADD(T5, To);
|
Chris@10
|
407 T1R = VBYI(VADD(TS, TT));
|
Chris@10
|
408 T1P = LDW(&(W[TWVL * 28]));
|
Chris@10
|
409 T1S = VZMULI(T1P, VSUB(T1Q, T1R));
|
Chris@10
|
410 T25 = LDW(&(W[TWVL * 8]));
|
Chris@10
|
411 T26 = VZMULI(T25, VADD(T1Q, T1R));
|
Chris@10
|
412 {
|
Chris@10
|
413 V T2l, T2z, T2i, T2y, T2e, T2h, T27, T2F, T2r, T2x, T1g, T1K, T1p, T1L, T1n;
|
Chris@10
|
414 V T1o, T11, T1T, T1B, T1J, TL, T1G, TZ, T1H, Tr, TV, T1, T2D, T1F, T2p;
|
Chris@10
|
415 V T1w, T1Y, T1z, T1Z, T1u, T1y, T1t, T2J, T1X, T2v;
|
Chris@10
|
416 T2l = VBYI(VFMA(LDK(KP951056516), T2j, VMUL(LDK(KP587785252), T2k)));
|
Chris@10
|
417 T2z = VBYI(VFNMS(LDK(KP951056516), T2k, VMUL(LDK(KP587785252), T2j)));
|
Chris@10
|
418 T2e = VMUL(LDK(KP559016994), VSUB(T2a, T2d));
|
Chris@10
|
419 T2h = VFNMS(LDK(KP250000000), T2g, T2f);
|
Chris@10
|
420 T2i = VADD(T2e, T2h);
|
Chris@10
|
421 T2y = VSUB(T2h, T2e);
|
Chris@10
|
422 T27 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
423 T2m = VZMUL(T27, VSUB(T2i, T2l));
|
Chris@10
|
424 T2F = LDW(&(W[TWVL * 22]));
|
Chris@10
|
425 T2G = VZMUL(T2F, VADD(T2z, T2y));
|
Chris@10
|
426 T2r = LDW(&(W[TWVL * 30]));
|
Chris@10
|
427 T2s = VZMUL(T2r, VADD(T2l, T2i));
|
Chris@10
|
428 T2x = LDW(&(W[TWVL * 14]));
|
Chris@10
|
429 T2A = VZMUL(T2x, VSUB(T2y, T2z));
|
Chris@10
|
430 T1g = VBYI(VFNMS(LDK(KP951056516), T1f, VMUL(LDK(KP587785252), T18)));
|
Chris@10
|
431 T1K = VBYI(VFMA(LDK(KP951056516), T18, VMUL(LDK(KP587785252), T1f)));
|
Chris@10
|
432 T1n = VFNMS(LDK(KP250000000), T1m, T1j);
|
Chris@10
|
433 T1o = VMUL(LDK(KP559016994), VSUB(T1k, T1l));
|
Chris@10
|
434 T1p = VSUB(T1n, T1o);
|
Chris@10
|
435 T1L = VADD(T1o, T1n);
|
Chris@10
|
436 T11 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
437 T1q = VZMUL(T11, VADD(T1g, T1p));
|
Chris@10
|
438 T1T = LDW(&(W[TWVL * 26]));
|
Chris@10
|
439 T1U = VZMUL(T1T, VSUB(T1L, T1K));
|
Chris@10
|
440 T1B = LDW(&(W[TWVL * 34]));
|
Chris@10
|
441 T1C = VZMUL(T1B, VSUB(T1p, T1g));
|
Chris@10
|
442 T1J = LDW(&(W[TWVL * 10]));
|
Chris@10
|
443 T1M = VZMUL(T1J, VADD(T1K, T1L));
|
Chris@10
|
444 Tr = VSUB(Tp, Tq);
|
Chris@10
|
445 TL = VSUB(Tr, TK);
|
Chris@10
|
446 T1G = VADD(Tr, TK);
|
Chris@10
|
447 TV = VSUB(TO, TU);
|
Chris@10
|
448 TZ = VBYI(VSUB(TV, TY));
|
Chris@10
|
449 T1H = VBYI(VADD(TY, TV));
|
Chris@10
|
450 T1 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
451 T10 = VZMULI(T1, VADD(TL, TZ));
|
Chris@10
|
452 T2D = LDW(&(W[TWVL * 24]));
|
Chris@10
|
453 T2E = VZMULI(T2D, VSUB(T1G, T1H));
|
Chris@10
|
454 T1F = LDW(&(W[TWVL * 12]));
|
Chris@10
|
455 T1I = VZMULI(T1F, VADD(T1G, T1H));
|
Chris@10
|
456 T2p = LDW(&(W[TWVL * 32]));
|
Chris@10
|
457 T2q = VZMULI(T2p, VSUB(TL, TZ));
|
Chris@10
|
458 T1u = VADD(Tq, Tp);
|
Chris@10
|
459 T1w = VSUB(T1u, T1v);
|
Chris@10
|
460 T1Y = VADD(T1u, T1v);
|
Chris@10
|
461 T1y = VADD(TO, TU);
|
Chris@10
|
462 T1z = VBYI(VADD(T1x, T1y));
|
Chris@10
|
463 T1Z = VBYI(VSUB(T1y, T1x));
|
Chris@10
|
464 T1t = LDW(&(W[TWVL * 36]));
|
Chris@10
|
465 T1A = VZMULI(T1t, VSUB(T1w, T1z));
|
Chris@10
|
466 T2J = LDW(&(W[0]));
|
Chris@10
|
467 T2K = VZMULI(T2J, VADD(T1w, T1z));
|
Chris@10
|
468 T1X = LDW(&(W[TWVL * 20]));
|
Chris@10
|
469 T20 = VZMULI(T1X, VSUB(T1Y, T1Z));
|
Chris@10
|
470 T2v = LDW(&(W[TWVL * 16]));
|
Chris@10
|
471 T2w = VZMULI(T2v, VADD(T1Y, T1Z));
|
Chris@10
|
472 }
|
Chris@10
|
473 T1r = VADD(T10, T1q);
|
Chris@10
|
474 ST(&(Rp[WS(rs, 1)]), T1r, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
475 T1s = VCONJ(VSUB(T1q, T10));
|
Chris@10
|
476 ST(&(Rm[WS(rs, 1)]), T1s, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
477 T2C = VCONJ(VSUB(T2A, T2w));
|
Chris@10
|
478 ST(&(Rm[WS(rs, 4)]), T2C, -ms, &(Rm[0]));
|
Chris@10
|
479 T2N = VCONJ(VSUB(T2L, T2K));
|
Chris@10
|
480 ST(&(Rm[0]), T2N, -ms, &(Rm[0]));
|
Chris@10
|
481 T1N = VADD(T1I, T1M);
|
Chris@10
|
482 ST(&(Rp[WS(rs, 3)]), T1N, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
483 T2H = VADD(T2E, T2G);
|
Chris@10
|
484 ST(&(Rp[WS(rs, 6)]), T2H, ms, &(Rp[0]));
|
Chris@10
|
485 T2I = VCONJ(VSUB(T2G, T2E));
|
Chris@10
|
486 ST(&(Rm[WS(rs, 6)]), T2I, -ms, &(Rm[0]));
|
Chris@10
|
487 T2M = VADD(T2K, T2L);
|
Chris@10
|
488 ST(&(Rp[0]), T2M, ms, &(Rp[0]));
|
Chris@10
|
489 T1E = VCONJ(VSUB(T1C, T1A));
|
Chris@10
|
490 ST(&(Rm[WS(rs, 9)]), T1E, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
491 T1D = VADD(T1A, T1C);
|
Chris@10
|
492 ST(&(Rp[WS(rs, 9)]), T1D, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
493 T1O = VCONJ(VSUB(T1M, T1I));
|
Chris@10
|
494 ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
495 T1V = VADD(T1S, T1U);
|
Chris@10
|
496 ST(&(Rp[WS(rs, 7)]), T1V, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
497 T2n = VADD(T26, T2m);
|
Chris@10
|
498 ST(&(Rp[WS(rs, 2)]), T2n, ms, &(Rp[0]));
|
Chris@10
|
499 T2B = VADD(T2w, T2A);
|
Chris@10
|
500 ST(&(Rp[WS(rs, 4)]), T2B, ms, &(Rp[0]));
|
Chris@10
|
501 T24 = VCONJ(VSUB(T22, T20));
|
Chris@10
|
502 ST(&(Rm[WS(rs, 5)]), T24, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
503 T2o = VCONJ(VSUB(T2m, T26));
|
Chris@10
|
504 ST(&(Rm[WS(rs, 2)]), T2o, -ms, &(Rm[0]));
|
Chris@10
|
505 T2t = VADD(T2q, T2s);
|
Chris@10
|
506 ST(&(Rp[WS(rs, 8)]), T2t, ms, &(Rp[0]));
|
Chris@10
|
507 T2u = VCONJ(VSUB(T2s, T2q));
|
Chris@10
|
508 ST(&(Rm[WS(rs, 8)]), T2u, -ms, &(Rm[0]));
|
Chris@10
|
509 T23 = VADD(T20, T22);
|
Chris@10
|
510 ST(&(Rp[WS(rs, 5)]), T23, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
511 T1W = VCONJ(VSUB(T1U, T1S));
|
Chris@10
|
512 ST(&(Rm[WS(rs, 7)]), T1W, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
513 }
|
Chris@10
|
514 }
|
Chris@10
|
515 }
|
Chris@10
|
516 VLEAVE();
|
Chris@10
|
517 }
|
Chris@10
|
518
|
Chris@10
|
519 static const tw_instr twinstr[] = {
|
Chris@10
|
520 VTW(1, 1),
|
Chris@10
|
521 VTW(1, 2),
|
Chris@10
|
522 VTW(1, 3),
|
Chris@10
|
523 VTW(1, 4),
|
Chris@10
|
524 VTW(1, 5),
|
Chris@10
|
525 VTW(1, 6),
|
Chris@10
|
526 VTW(1, 7),
|
Chris@10
|
527 VTW(1, 8),
|
Chris@10
|
528 VTW(1, 9),
|
Chris@10
|
529 VTW(1, 10),
|
Chris@10
|
530 VTW(1, 11),
|
Chris@10
|
531 VTW(1, 12),
|
Chris@10
|
532 VTW(1, 13),
|
Chris@10
|
533 VTW(1, 14),
|
Chris@10
|
534 VTW(1, 15),
|
Chris@10
|
535 VTW(1, 16),
|
Chris@10
|
536 VTW(1, 17),
|
Chris@10
|
537 VTW(1, 18),
|
Chris@10
|
538 VTW(1, 19),
|
Chris@10
|
539 {TW_NEXT, VL, 0}
|
Chris@10
|
540 };
|
Chris@10
|
541
|
Chris@10
|
542 static const hc2c_desc desc = { 20, XSIMD_STRING("hc2cbdftv_20"), twinstr, &GENUS, {131, 50, 12, 0} };
|
Chris@10
|
543
|
Chris@10
|
544 void XSIMD(codelet_hc2cbdftv_20) (planner *p) {
|
Chris@10
|
545 X(khc2c_register) (p, hc2cbdftv_20, &desc, HC2C_VIA_DFT);
|
Chris@10
|
546 }
|
Chris@10
|
547 #endif /* HAVE_FMA */
|