Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:30 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 71 FP additions, 51 FP multiplications,
|
Chris@10
|
32 * (or, 45 additions, 25 multiplications, 26 fused multiply/add),
|
Chris@10
|
33 * 88 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cbv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT m;
|
Chris@10
|
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
|
Chris@10
|
44 V Tz, TT, T1, T1j, TN, TF, TP, TL, Tx, T15, TJ, T1b, T1g, T1l, T18;
|
Chris@10
|
45 V T12, TO, TC, TK, Tl, T16, TQ, TU, TG, T1c, TM, T1k, Ty, T19, T1a;
|
Chris@10
|
46 V T13, T14, T1h, T1i, TS, TR, T1m, T1n, TI, TH;
|
Chris@10
|
47 {
|
Chris@10
|
48 V T2, Tm, T7, Tp, T8, Tq, T9, Tu, T5, Tr, Tg, Tn, Tj, Ta, T3;
|
Chris@10
|
49 V T4, Te, Tf, Th, Ti, TV, T6, TW, Tk, TD, Tt, TB, T11, T1f, Tw;
|
Chris@10
|
50 V TE, TX, Tc, Ts, T10, TZ, To, Tb, Tv, T17, T1d, T1e, TY, TA, Td;
|
Chris@10
|
51 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
52 Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
53 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
54 Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
55 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
56 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
57 Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
58 Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
59 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
60 Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
61 T8 = VCONJ(T7);
|
Chris@10
|
62 Tq = VCONJ(Tp);
|
Chris@10
|
63 T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
64 Tu = VFNMSCONJ(T4, T3);
|
Chris@10
|
65 T5 = VFMACONJ(T4, T3);
|
Chris@10
|
66 Tr = VADD(Te, Tf);
|
Chris@10
|
67 Tg = VSUB(Te, Tf);
|
Chris@10
|
68 Tn = VADD(Ti, Th);
|
Chris@10
|
69 Tj = VSUB(Th, Ti);
|
Chris@10
|
70 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
71 TV = LDW(&(W[TWVL * 4]));
|
Chris@10
|
72 Tz = LDW(&(W[TWVL * 18]));
|
Chris@10
|
73 T6 = VFNMS(LDK(KP500000000), T5, T2);
|
Chris@10
|
74 TW = VADD(T2, T5);
|
Chris@10
|
75 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
|
Chris@10
|
76 T10 = VFMACONJ(Tp, Tr);
|
Chris@10
|
77 TZ = VFMACONJ(Tn, Tm);
|
Chris@10
|
78 To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm);
|
Chris@10
|
79 Tk = VFMACONJ(Tj, Tg);
|
Chris@10
|
80 TD = VFNMSCONJ(Tj, Tg);
|
Chris@10
|
81 Tb = VFMACONJ(Ta, T9);
|
Chris@10
|
82 Tv = VFMSCONJ(Ta, T9);
|
Chris@10
|
83 TT = LDW(&(W[TWVL * 2]));
|
Chris@10
|
84 T1 = LDW(&(W[TWVL * 20]));
|
Chris@10
|
85 Tt = VSUB(To, Ts);
|
Chris@10
|
86 TB = VADD(To, Ts);
|
Chris@10
|
87 T11 = VSUB(TZ, T10);
|
Chris@10
|
88 T1f = VADD(TZ, T10);
|
Chris@10
|
89 Tw = VSUB(Tu, Tv);
|
Chris@10
|
90 TE = VADD(Tu, Tv);
|
Chris@10
|
91 TX = VFMACONJ(T7, Tb);
|
Chris@10
|
92 Tc = VFNMS(LDK(KP500000000), Tb, T8);
|
Chris@10
|
93 T1j = LDW(&(W[0]));
|
Chris@10
|
94 T17 = LDW(&(W[TWVL * 16]));
|
Chris@10
|
95 T1d = LDW(&(W[TWVL * 10]));
|
Chris@10
|
96 TN = LDW(&(W[TWVL * 6]));
|
Chris@10
|
97 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
|
Chris@10
|
98 TP = VMUL(LDK(KP866025403), VADD(TE, TD));
|
Chris@10
|
99 TL = VFNMS(LDK(KP866025403), Tw, Tt);
|
Chris@10
|
100 Tx = VFMA(LDK(KP866025403), Tw, Tt);
|
Chris@10
|
101 T1e = VADD(TW, TX);
|
Chris@10
|
102 TY = VSUB(TW, TX);
|
Chris@10
|
103 TA = VADD(T6, Tc);
|
Chris@10
|
104 Td = VSUB(T6, Tc);
|
Chris@10
|
105 T15 = LDW(&(W[TWVL * 14]));
|
Chris@10
|
106 TJ = LDW(&(W[TWVL * 8]));
|
Chris@10
|
107 T1b = LDW(&(W[TWVL * 12]));
|
Chris@10
|
108 T1g = VZMUL(T1d, VSUB(T1e, T1f));
|
Chris@10
|
109 T1l = VADD(T1e, T1f);
|
Chris@10
|
110 T18 = VZMULI(T17, VFMAI(T11, TY));
|
Chris@10
|
111 T12 = VZMULI(TV, VFNMSI(T11, TY));
|
Chris@10
|
112 TO = VADD(TA, TB);
|
Chris@10
|
113 TC = VSUB(TA, TB);
|
Chris@10
|
114 TK = VFNMS(LDK(KP866025403), Tk, Td);
|
Chris@10
|
115 Tl = VFMA(LDK(KP866025403), Tk, Td);
|
Chris@10
|
116 }
|
Chris@10
|
117 T16 = VZMUL(T15, VFNMSI(TP, TO));
|
Chris@10
|
118 TQ = VZMUL(TN, VFMAI(TP, TO));
|
Chris@10
|
119 TU = VZMUL(TT, VFMAI(TF, TC));
|
Chris@10
|
120 TG = VZMUL(Tz, VFNMSI(TF, TC));
|
Chris@10
|
121 T1c = VZMULI(T1b, VFNMSI(TL, TK));
|
Chris@10
|
122 TM = VZMULI(TJ, VFMAI(TL, TK));
|
Chris@10
|
123 T1k = VZMULI(T1j, VFMAI(Tx, Tl));
|
Chris@10
|
124 Ty = VZMULI(T1, VFNMSI(Tx, Tl));
|
Chris@10
|
125 T19 = VCONJ(VSUB(T16, T18));
|
Chris@10
|
126 T1a = VADD(T16, T18);
|
Chris@10
|
127 T13 = VCONJ(VSUB(TU, T12));
|
Chris@10
|
128 T14 = VADD(TU, T12);
|
Chris@10
|
129 T1h = VADD(T1c, T1g);
|
Chris@10
|
130 T1i = VCONJ(VSUB(T1g, T1c));
|
Chris@10
|
131 TS = VCONJ(VSUB(TQ, TM));
|
Chris@10
|
132 TR = VADD(TM, TQ);
|
Chris@10
|
133 T1m = VADD(T1k, T1l);
|
Chris@10
|
134 T1n = VCONJ(VSUB(T1l, T1k));
|
Chris@10
|
135 TI = VCONJ(VSUB(TG, Ty));
|
Chris@10
|
136 TH = VADD(Ty, TG);
|
Chris@10
|
137 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
|
Chris@10
|
138 ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0]));
|
Chris@10
|
139 ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
140 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
141 ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
142 ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
143 ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0]));
|
Chris@10
|
144 ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0]));
|
Chris@10
|
145 ST(&(Rp[0]), T1m, ms, &(Rp[0]));
|
Chris@10
|
146 ST(&(Rm[0]), T1n, -ms, &(Rm[0]));
|
Chris@10
|
147 ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
148 ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
149 }
|
Chris@10
|
150 }
|
Chris@10
|
151 VLEAVE();
|
Chris@10
|
152 }
|
Chris@10
|
153
|
Chris@10
|
154 static const tw_instr twinstr[] = {
|
Chris@10
|
155 VTW(1, 1),
|
Chris@10
|
156 VTW(1, 2),
|
Chris@10
|
157 VTW(1, 3),
|
Chris@10
|
158 VTW(1, 4),
|
Chris@10
|
159 VTW(1, 5),
|
Chris@10
|
160 VTW(1, 6),
|
Chris@10
|
161 VTW(1, 7),
|
Chris@10
|
162 VTW(1, 8),
|
Chris@10
|
163 VTW(1, 9),
|
Chris@10
|
164 VTW(1, 10),
|
Chris@10
|
165 VTW(1, 11),
|
Chris@10
|
166 {TW_NEXT, VL, 0}
|
Chris@10
|
167 };
|
Chris@10
|
168
|
Chris@10
|
169 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} };
|
Chris@10
|
170
|
Chris@10
|
171 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
|
Chris@10
|
172 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
|
Chris@10
|
173 }
|
Chris@10
|
174 #else /* HAVE_FMA */
|
Chris@10
|
175
|
Chris@10
|
176 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */
|
Chris@10
|
177
|
Chris@10
|
178 /*
|
Chris@10
|
179 * This function contains 71 FP additions, 30 FP multiplications,
|
Chris@10
|
180 * (or, 67 additions, 26 multiplications, 4 fused multiply/add),
|
Chris@10
|
181 * 90 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
182 */
|
Chris@10
|
183 #include "hc2cbv.h"
|
Chris@10
|
184
|
Chris@10
|
185 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
186 {
|
Chris@10
|
187 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
189 {
|
Chris@10
|
190 INT m;
|
Chris@10
|
191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
|
Chris@10
|
192 V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3;
|
Chris@10
|
193 V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti;
|
Chris@10
|
194 V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12;
|
Chris@10
|
195 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
196 T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
197 T9 = VCONJ(T8);
|
Chris@10
|
198 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@10
|
199 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
200 T5 = VCONJ(T4);
|
Chris@10
|
201 T6 = VADD(T3, T5);
|
Chris@10
|
202 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
203 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
204 Tb = VCONJ(Ta);
|
Chris@10
|
205 Td = VADD(Tb, Tc);
|
Chris@10
|
206 TY = VADD(T2, T6);
|
Chris@10
|
207 TZ = VADD(T9, Td);
|
Chris@10
|
208 T7 = VFNMS(LDK(KP500000000), T6, T2);
|
Chris@10
|
209 Te = VFNMS(LDK(KP500000000), Td, T9);
|
Chris@10
|
210 Tf = VSUB(T7, Te);
|
Chris@10
|
211 TC = VADD(T7, Te);
|
Chris@10
|
212 To = VSUB(T3, T5);
|
Chris@10
|
213 Tp = VSUB(Tb, Tc);
|
Chris@10
|
214 Tq = VMUL(LDK(KP866025403), VSUB(To, Tp));
|
Chris@10
|
215 TG = VADD(To, Tp);
|
Chris@10
|
216 Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
217 Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
218 Tv = VCONJ(Tu);
|
Chris@10
|
219 Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@10
|
220 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
221 Ti = VCONJ(VSUB(Tg, Th));
|
Chris@10
|
222 Ts = VCONJ(VADD(Tg, Th));
|
Chris@10
|
223 Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
224 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
225 Tl = VSUB(Tj, Tk);
|
Chris@10
|
226 Tw = VADD(Tj, Tk);
|
Chris@10
|
227 Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl));
|
Chris@10
|
228 TF = VADD(Ti, Tl);
|
Chris@10
|
229 Tt = VFNMS(LDK(KP500000000), Ts, Tr);
|
Chris@10
|
230 Tx = VFNMS(LDK(KP500000000), Tw, Tv);
|
Chris@10
|
231 Ty = VSUB(Tt, Tx);
|
Chris@10
|
232 TD = VADD(Tt, Tx);
|
Chris@10
|
233 T11 = VADD(Tr, Ts);
|
Chris@10
|
234 T12 = VADD(Tv, Tw);
|
Chris@10
|
235 T13 = VBYI(VSUB(T11, T12));
|
Chris@10
|
236 T1h = VADD(T11, T12);
|
Chris@10
|
237 {
|
Chris@10
|
238 V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10;
|
Chris@10
|
239 V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE;
|
Chris@10
|
240 V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15;
|
Chris@10
|
241 T1g = VADD(TY, TZ);
|
Chris@10
|
242 T1n = VADD(T1g, T1h);
|
Chris@10
|
243 T1f = LDW(&(W[TWVL * 10]));
|
Chris@10
|
244 T1i = VZMUL(T1f, VSUB(T1g, T1h));
|
Chris@10
|
245 T10 = VSUB(TY, TZ);
|
Chris@10
|
246 TX = LDW(&(W[TWVL * 4]));
|
Chris@10
|
247 T14 = VZMULI(TX, VSUB(T10, T13));
|
Chris@10
|
248 T19 = LDW(&(W[TWVL * 16]));
|
Chris@10
|
249 T1a = VZMULI(T19, VADD(T10, T13));
|
Chris@10
|
250 Tn = VSUB(Tf, Tm);
|
Chris@10
|
251 Tz = VBYI(VADD(Tq, Ty));
|
Chris@10
|
252 T1 = LDW(&(W[TWVL * 20]));
|
Chris@10
|
253 TA = VZMULI(T1, VSUB(Tn, Tz));
|
Chris@10
|
254 T1l = LDW(&(W[0]));
|
Chris@10
|
255 T1m = VZMULI(T1l, VADD(Tn, Tz));
|
Chris@10
|
256 TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF)));
|
Chris@10
|
257 TR = VADD(TC, TD);
|
Chris@10
|
258 TP = LDW(&(W[TWVL * 6]));
|
Chris@10
|
259 TS = VZMUL(TP, VADD(TQ, TR));
|
Chris@10
|
260 T17 = LDW(&(W[TWVL * 14]));
|
Chris@10
|
261 T18 = VZMUL(T17, VSUB(TR, TQ));
|
Chris@10
|
262 TM = VADD(Tf, Tm);
|
Chris@10
|
263 TN = VBYI(VSUB(Ty, Tq));
|
Chris@10
|
264 TL = LDW(&(W[TWVL * 8]));
|
Chris@10
|
265 TO = VZMULI(TL, VADD(TM, TN));
|
Chris@10
|
266 T1d = LDW(&(W[TWVL * 12]));
|
Chris@10
|
267 T1e = VZMULI(T1d, VSUB(TM, TN));
|
Chris@10
|
268 TE = VSUB(TC, TD);
|
Chris@10
|
269 TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG)));
|
Chris@10
|
270 TB = LDW(&(W[TWVL * 18]));
|
Chris@10
|
271 TI = VZMUL(TB, VSUB(TE, TH));
|
Chris@10
|
272 TV = LDW(&(W[TWVL * 2]));
|
Chris@10
|
273 TW = VZMUL(TV, VADD(TH, TE));
|
Chris@10
|
274 TJ = VADD(TA, TI);
|
Chris@10
|
275 ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
276 T1p = VCONJ(VSUB(T1n, T1m));
|
Chris@10
|
277 ST(&(Rm[0]), T1p, -ms, &(Rm[0]));
|
Chris@10
|
278 T1k = VCONJ(VSUB(T1i, T1e));
|
Chris@10
|
279 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
280 TT = VADD(TO, TS);
|
Chris@10
|
281 ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0]));
|
Chris@10
|
282 T1o = VADD(T1m, T1n);
|
Chris@10
|
283 ST(&(Rp[0]), T1o, ms, &(Rp[0]));
|
Chris@10
|
284 TK = VCONJ(VSUB(TI, TA));
|
Chris@10
|
285 ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
286 TU = VCONJ(VSUB(TS, TO));
|
Chris@10
|
287 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
|
Chris@10
|
288 T1j = VADD(T1e, T1i);
|
Chris@10
|
289 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
290 T1b = VCONJ(VSUB(T18, T1a));
|
Chris@10
|
291 ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0]));
|
Chris@10
|
292 T16 = VADD(TW, T14);
|
Chris@10
|
293 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
294 T1c = VADD(T18, T1a);
|
Chris@10
|
295 ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0]));
|
Chris@10
|
296 T15 = VCONJ(VSUB(TW, T14));
|
Chris@10
|
297 ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
298 }
|
Chris@10
|
299 }
|
Chris@10
|
300 }
|
Chris@10
|
301 VLEAVE();
|
Chris@10
|
302 }
|
Chris@10
|
303
|
Chris@10
|
304 static const tw_instr twinstr[] = {
|
Chris@10
|
305 VTW(1, 1),
|
Chris@10
|
306 VTW(1, 2),
|
Chris@10
|
307 VTW(1, 3),
|
Chris@10
|
308 VTW(1, 4),
|
Chris@10
|
309 VTW(1, 5),
|
Chris@10
|
310 VTW(1, 6),
|
Chris@10
|
311 VTW(1, 7),
|
Chris@10
|
312 VTW(1, 8),
|
Chris@10
|
313 VTW(1, 9),
|
Chris@10
|
314 VTW(1, 10),
|
Chris@10
|
315 VTW(1, 11),
|
Chris@10
|
316 {TW_NEXT, VL, 0}
|
Chris@10
|
317 };
|
Chris@10
|
318
|
Chris@10
|
319 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} };
|
Chris@10
|
320
|
Chris@10
|
321 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
|
Chris@10
|
322 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
|
Chris@10
|
323 }
|
Chris@10
|
324 #endif /* HAVE_FMA */
|