annotate src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_12.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:30 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 71 FP additions, 51 FP multiplications,
Chris@10 32 * (or, 45 additions, 25 multiplications, 26 fused multiply/add),
Chris@10 33 * 88 stack variables, 2 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cbv.h"
Chris@10 36
Chris@10 37 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@10 44 V Tz, TT, T1, T1j, TN, TF, TP, TL, Tx, T15, TJ, T1b, T1g, T1l, T18;
Chris@10 45 V T12, TO, TC, TK, Tl, T16, TQ, TU, TG, T1c, TM, T1k, Ty, T19, T1a;
Chris@10 46 V T13, T14, T1h, T1i, TS, TR, T1m, T1n, TI, TH;
Chris@10 47 {
Chris@10 48 V T2, Tm, T7, Tp, T8, Tq, T9, Tu, T5, Tr, Tg, Tn, Tj, Ta, T3;
Chris@10 49 V T4, Te, Tf, Th, Ti, TV, T6, TW, Tk, TD, Tt, TB, T11, T1f, Tw;
Chris@10 50 V TE, TX, Tc, Ts, T10, TZ, To, Tb, Tv, T17, T1d, T1e, TY, TA, Td;
Chris@10 51 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 52 Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 53 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 54 Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 55 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 56 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 57 Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 58 Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 59 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 60 Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 61 T8 = VCONJ(T7);
Chris@10 62 Tq = VCONJ(Tp);
Chris@10 63 T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 64 Tu = VFNMSCONJ(T4, T3);
Chris@10 65 T5 = VFMACONJ(T4, T3);
Chris@10 66 Tr = VADD(Te, Tf);
Chris@10 67 Tg = VSUB(Te, Tf);
Chris@10 68 Tn = VADD(Ti, Th);
Chris@10 69 Tj = VSUB(Th, Ti);
Chris@10 70 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 71 TV = LDW(&(W[TWVL * 4]));
Chris@10 72 Tz = LDW(&(W[TWVL * 18]));
Chris@10 73 T6 = VFNMS(LDK(KP500000000), T5, T2);
Chris@10 74 TW = VADD(T2, T5);
Chris@10 75 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
Chris@10 76 T10 = VFMACONJ(Tp, Tr);
Chris@10 77 TZ = VFMACONJ(Tn, Tm);
Chris@10 78 To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm);
Chris@10 79 Tk = VFMACONJ(Tj, Tg);
Chris@10 80 TD = VFNMSCONJ(Tj, Tg);
Chris@10 81 Tb = VFMACONJ(Ta, T9);
Chris@10 82 Tv = VFMSCONJ(Ta, T9);
Chris@10 83 TT = LDW(&(W[TWVL * 2]));
Chris@10 84 T1 = LDW(&(W[TWVL * 20]));
Chris@10 85 Tt = VSUB(To, Ts);
Chris@10 86 TB = VADD(To, Ts);
Chris@10 87 T11 = VSUB(TZ, T10);
Chris@10 88 T1f = VADD(TZ, T10);
Chris@10 89 Tw = VSUB(Tu, Tv);
Chris@10 90 TE = VADD(Tu, Tv);
Chris@10 91 TX = VFMACONJ(T7, Tb);
Chris@10 92 Tc = VFNMS(LDK(KP500000000), Tb, T8);
Chris@10 93 T1j = LDW(&(W[0]));
Chris@10 94 T17 = LDW(&(W[TWVL * 16]));
Chris@10 95 T1d = LDW(&(W[TWVL * 10]));
Chris@10 96 TN = LDW(&(W[TWVL * 6]));
Chris@10 97 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
Chris@10 98 TP = VMUL(LDK(KP866025403), VADD(TE, TD));
Chris@10 99 TL = VFNMS(LDK(KP866025403), Tw, Tt);
Chris@10 100 Tx = VFMA(LDK(KP866025403), Tw, Tt);
Chris@10 101 T1e = VADD(TW, TX);
Chris@10 102 TY = VSUB(TW, TX);
Chris@10 103 TA = VADD(T6, Tc);
Chris@10 104 Td = VSUB(T6, Tc);
Chris@10 105 T15 = LDW(&(W[TWVL * 14]));
Chris@10 106 TJ = LDW(&(W[TWVL * 8]));
Chris@10 107 T1b = LDW(&(W[TWVL * 12]));
Chris@10 108 T1g = VZMUL(T1d, VSUB(T1e, T1f));
Chris@10 109 T1l = VADD(T1e, T1f);
Chris@10 110 T18 = VZMULI(T17, VFMAI(T11, TY));
Chris@10 111 T12 = VZMULI(TV, VFNMSI(T11, TY));
Chris@10 112 TO = VADD(TA, TB);
Chris@10 113 TC = VSUB(TA, TB);
Chris@10 114 TK = VFNMS(LDK(KP866025403), Tk, Td);
Chris@10 115 Tl = VFMA(LDK(KP866025403), Tk, Td);
Chris@10 116 }
Chris@10 117 T16 = VZMUL(T15, VFNMSI(TP, TO));
Chris@10 118 TQ = VZMUL(TN, VFMAI(TP, TO));
Chris@10 119 TU = VZMUL(TT, VFMAI(TF, TC));
Chris@10 120 TG = VZMUL(Tz, VFNMSI(TF, TC));
Chris@10 121 T1c = VZMULI(T1b, VFNMSI(TL, TK));
Chris@10 122 TM = VZMULI(TJ, VFMAI(TL, TK));
Chris@10 123 T1k = VZMULI(T1j, VFMAI(Tx, Tl));
Chris@10 124 Ty = VZMULI(T1, VFNMSI(Tx, Tl));
Chris@10 125 T19 = VCONJ(VSUB(T16, T18));
Chris@10 126 T1a = VADD(T16, T18);
Chris@10 127 T13 = VCONJ(VSUB(TU, T12));
Chris@10 128 T14 = VADD(TU, T12);
Chris@10 129 T1h = VADD(T1c, T1g);
Chris@10 130 T1i = VCONJ(VSUB(T1g, T1c));
Chris@10 131 TS = VCONJ(VSUB(TQ, TM));
Chris@10 132 TR = VADD(TM, TQ);
Chris@10 133 T1m = VADD(T1k, T1l);
Chris@10 134 T1n = VCONJ(VSUB(T1l, T1k));
Chris@10 135 TI = VCONJ(VSUB(TG, Ty));
Chris@10 136 TH = VADD(Ty, TG);
Chris@10 137 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
Chris@10 138 ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0]));
Chris@10 139 ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)]));
Chris@10 140 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
Chris@10 141 ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)]));
Chris@10 142 ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)]));
Chris@10 143 ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0]));
Chris@10 144 ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0]));
Chris@10 145 ST(&(Rp[0]), T1m, ms, &(Rp[0]));
Chris@10 146 ST(&(Rm[0]), T1n, -ms, &(Rm[0]));
Chris@10 147 ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)]));
Chris@10 148 ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)]));
Chris@10 149 }
Chris@10 150 }
Chris@10 151 VLEAVE();
Chris@10 152 }
Chris@10 153
Chris@10 154 static const tw_instr twinstr[] = {
Chris@10 155 VTW(1, 1),
Chris@10 156 VTW(1, 2),
Chris@10 157 VTW(1, 3),
Chris@10 158 VTW(1, 4),
Chris@10 159 VTW(1, 5),
Chris@10 160 VTW(1, 6),
Chris@10 161 VTW(1, 7),
Chris@10 162 VTW(1, 8),
Chris@10 163 VTW(1, 9),
Chris@10 164 VTW(1, 10),
Chris@10 165 VTW(1, 11),
Chris@10 166 {TW_NEXT, VL, 0}
Chris@10 167 };
Chris@10 168
Chris@10 169 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} };
Chris@10 170
Chris@10 171 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
Chris@10 172 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
Chris@10 173 }
Chris@10 174 #else /* HAVE_FMA */
Chris@10 175
Chris@10 176 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */
Chris@10 177
Chris@10 178 /*
Chris@10 179 * This function contains 71 FP additions, 30 FP multiplications,
Chris@10 180 * (or, 67 additions, 26 multiplications, 4 fused multiply/add),
Chris@10 181 * 90 stack variables, 2 constants, and 24 memory accesses
Chris@10 182 */
Chris@10 183 #include "hc2cbv.h"
Chris@10 184
Chris@10 185 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 186 {
Chris@10 187 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 189 {
Chris@10 190 INT m;
Chris@10 191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@10 192 V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3;
Chris@10 193 V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti;
Chris@10 194 V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12;
Chris@10 195 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 196 T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 197 T9 = VCONJ(T8);
Chris@10 198 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 199 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 200 T5 = VCONJ(T4);
Chris@10 201 T6 = VADD(T3, T5);
Chris@10 202 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 203 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 204 Tb = VCONJ(Ta);
Chris@10 205 Td = VADD(Tb, Tc);
Chris@10 206 TY = VADD(T2, T6);
Chris@10 207 TZ = VADD(T9, Td);
Chris@10 208 T7 = VFNMS(LDK(KP500000000), T6, T2);
Chris@10 209 Te = VFNMS(LDK(KP500000000), Td, T9);
Chris@10 210 Tf = VSUB(T7, Te);
Chris@10 211 TC = VADD(T7, Te);
Chris@10 212 To = VSUB(T3, T5);
Chris@10 213 Tp = VSUB(Tb, Tc);
Chris@10 214 Tq = VMUL(LDK(KP866025403), VSUB(To, Tp));
Chris@10 215 TG = VADD(To, Tp);
Chris@10 216 Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 217 Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 218 Tv = VCONJ(Tu);
Chris@10 219 Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 220 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 221 Ti = VCONJ(VSUB(Tg, Th));
Chris@10 222 Ts = VCONJ(VADD(Tg, Th));
Chris@10 223 Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 224 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 225 Tl = VSUB(Tj, Tk);
Chris@10 226 Tw = VADD(Tj, Tk);
Chris@10 227 Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl));
Chris@10 228 TF = VADD(Ti, Tl);
Chris@10 229 Tt = VFNMS(LDK(KP500000000), Ts, Tr);
Chris@10 230 Tx = VFNMS(LDK(KP500000000), Tw, Tv);
Chris@10 231 Ty = VSUB(Tt, Tx);
Chris@10 232 TD = VADD(Tt, Tx);
Chris@10 233 T11 = VADD(Tr, Ts);
Chris@10 234 T12 = VADD(Tv, Tw);
Chris@10 235 T13 = VBYI(VSUB(T11, T12));
Chris@10 236 T1h = VADD(T11, T12);
Chris@10 237 {
Chris@10 238 V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10;
Chris@10 239 V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE;
Chris@10 240 V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15;
Chris@10 241 T1g = VADD(TY, TZ);
Chris@10 242 T1n = VADD(T1g, T1h);
Chris@10 243 T1f = LDW(&(W[TWVL * 10]));
Chris@10 244 T1i = VZMUL(T1f, VSUB(T1g, T1h));
Chris@10 245 T10 = VSUB(TY, TZ);
Chris@10 246 TX = LDW(&(W[TWVL * 4]));
Chris@10 247 T14 = VZMULI(TX, VSUB(T10, T13));
Chris@10 248 T19 = LDW(&(W[TWVL * 16]));
Chris@10 249 T1a = VZMULI(T19, VADD(T10, T13));
Chris@10 250 Tn = VSUB(Tf, Tm);
Chris@10 251 Tz = VBYI(VADD(Tq, Ty));
Chris@10 252 T1 = LDW(&(W[TWVL * 20]));
Chris@10 253 TA = VZMULI(T1, VSUB(Tn, Tz));
Chris@10 254 T1l = LDW(&(W[0]));
Chris@10 255 T1m = VZMULI(T1l, VADD(Tn, Tz));
Chris@10 256 TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF)));
Chris@10 257 TR = VADD(TC, TD);
Chris@10 258 TP = LDW(&(W[TWVL * 6]));
Chris@10 259 TS = VZMUL(TP, VADD(TQ, TR));
Chris@10 260 T17 = LDW(&(W[TWVL * 14]));
Chris@10 261 T18 = VZMUL(T17, VSUB(TR, TQ));
Chris@10 262 TM = VADD(Tf, Tm);
Chris@10 263 TN = VBYI(VSUB(Ty, Tq));
Chris@10 264 TL = LDW(&(W[TWVL * 8]));
Chris@10 265 TO = VZMULI(TL, VADD(TM, TN));
Chris@10 266 T1d = LDW(&(W[TWVL * 12]));
Chris@10 267 T1e = VZMULI(T1d, VSUB(TM, TN));
Chris@10 268 TE = VSUB(TC, TD);
Chris@10 269 TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG)));
Chris@10 270 TB = LDW(&(W[TWVL * 18]));
Chris@10 271 TI = VZMUL(TB, VSUB(TE, TH));
Chris@10 272 TV = LDW(&(W[TWVL * 2]));
Chris@10 273 TW = VZMUL(TV, VADD(TH, TE));
Chris@10 274 TJ = VADD(TA, TI);
Chris@10 275 ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)]));
Chris@10 276 T1p = VCONJ(VSUB(T1n, T1m));
Chris@10 277 ST(&(Rm[0]), T1p, -ms, &(Rm[0]));
Chris@10 278 T1k = VCONJ(VSUB(T1i, T1e));
Chris@10 279 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
Chris@10 280 TT = VADD(TO, TS);
Chris@10 281 ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0]));
Chris@10 282 T1o = VADD(T1m, T1n);
Chris@10 283 ST(&(Rp[0]), T1o, ms, &(Rp[0]));
Chris@10 284 TK = VCONJ(VSUB(TI, TA));
Chris@10 285 ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)]));
Chris@10 286 TU = VCONJ(VSUB(TS, TO));
Chris@10 287 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
Chris@10 288 T1j = VADD(T1e, T1i);
Chris@10 289 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
Chris@10 290 T1b = VCONJ(VSUB(T18, T1a));
Chris@10 291 ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0]));
Chris@10 292 T16 = VADD(TW, T14);
Chris@10 293 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
Chris@10 294 T1c = VADD(T18, T1a);
Chris@10 295 ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0]));
Chris@10 296 T15 = VCONJ(VSUB(TW, T14));
Chris@10 297 ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)]));
Chris@10 298 }
Chris@10 299 }
Chris@10 300 }
Chris@10 301 VLEAVE();
Chris@10 302 }
Chris@10 303
Chris@10 304 static const tw_instr twinstr[] = {
Chris@10 305 VTW(1, 1),
Chris@10 306 VTW(1, 2),
Chris@10 307 VTW(1, 3),
Chris@10 308 VTW(1, 4),
Chris@10 309 VTW(1, 5),
Chris@10 310 VTW(1, 6),
Chris@10 311 VTW(1, 7),
Chris@10 312 VTW(1, 8),
Chris@10 313 VTW(1, 9),
Chris@10 314 VTW(1, 10),
Chris@10 315 VTW(1, 11),
Chris@10 316 {TW_NEXT, VL, 0}
Chris@10 317 };
Chris@10 318
Chris@10 319 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} };
Chris@10 320
Chris@10 321 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
Chris@10 322 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
Chris@10 323 }
Chris@10 324 #endif /* HAVE_FMA */