annotate src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 61 FP additions, 50 FP multiplications,
Chris@10 32 * (or, 33 additions, 22 multiplications, 28 fused multiply/add),
Chris@10 33 * 76 stack variables, 4 constants, and 20 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cbv.h"
Chris@10 36
Chris@10 37 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@10 46 V Ts, T4, TR, T1, TZ, TD, Ty, Tn, Ti, TT, T11, TJ, T15, Tr, TN;
Chris@10 47 V TE, Tv, To, Tb, T8, Tw, Te, Tx, Th, Tt, T7, T9, T2, T3, Tc;
Chris@10 48 V Td, Tf, Tg, T5, T6, Tu, Ta;
Chris@10 49 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 50 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 51 Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 52 Td = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 53 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 54 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 57 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 58 Ts = VFMACONJ(T3, T2);
Chris@10 59 T4 = VFNMSCONJ(T3, T2);
Chris@10 60 Tw = VFMACONJ(Td, Tc);
Chris@10 61 Te = VFNMSCONJ(Td, Tc);
Chris@10 62 Tx = VFMACONJ(Tg, Tf);
Chris@10 63 Th = VFMSCONJ(Tg, Tf);
Chris@10 64 Tt = VFMACONJ(T6, T5);
Chris@10 65 T7 = VFNMSCONJ(T6, T5);
Chris@10 66 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 67 TR = LDW(&(W[TWVL * 8]));
Chris@10 68 T1 = LDW(&(W[TWVL * 4]));
Chris@10 69 TZ = LDW(&(W[TWVL * 12]));
Chris@10 70 TD = VSUB(Tw, Tx);
Chris@10 71 Ty = VADD(Tw, Tx);
Chris@10 72 Tn = VSUB(Te, Th);
Chris@10 73 Ti = VADD(Te, Th);
Chris@10 74 Tu = VFMACONJ(T9, T8);
Chris@10 75 Ta = VFMSCONJ(T9, T8);
Chris@10 76 TT = LDW(&(W[TWVL * 6]));
Chris@10 77 T11 = LDW(&(W[TWVL * 10]));
Chris@10 78 TJ = LDW(&(W[TWVL * 16]));
Chris@10 79 T15 = LDW(&(W[0]));
Chris@10 80 Tr = LDW(&(W[TWVL * 2]));
Chris@10 81 TN = LDW(&(W[TWVL * 14]));
Chris@10 82 TE = VSUB(Tt, Tu);
Chris@10 83 Tv = VADD(Tt, Tu);
Chris@10 84 To = VSUB(T7, Ta);
Chris@10 85 Tb = VADD(T7, Ta);
Chris@10 86 {
Chris@10 87 V TV, TF, Tz, TB, TL, Tp, Tj, Tl, T17, TA, TS, Tk, TC, TU, TK;
Chris@10 88 V Tm, TO, TG, T12, TW, T16, TM, T10, Tq, TX, TY, T18, T19, TQ, TP;
Chris@10 89 V T13, T14, TI, TH;
Chris@10 90 TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
Chris@10 91 TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
Chris@10 92 Tz = VADD(Tv, Ty);
Chris@10 93 TB = VSUB(Tv, Ty);
Chris@10 94 TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
Chris@10 95 Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
Chris@10 96 Tj = VADD(Tb, Ti);
Chris@10 97 Tl = VSUB(Tb, Ti);
Chris@10 98 T17 = VADD(Ts, Tz);
Chris@10 99 TA = VFNMS(LDK(KP250000000), Tz, Ts);
Chris@10 100 TS = VZMULI(TR, VADD(T4, Tj));
Chris@10 101 Tk = VFNMS(LDK(KP250000000), Tj, T4);
Chris@10 102 TC = VFNMS(LDK(KP559016994), TB, TA);
Chris@10 103 TU = VFMA(LDK(KP559016994), TB, TA);
Chris@10 104 TK = VFMA(LDK(KP559016994), Tl, Tk);
Chris@10 105 Tm = VFNMS(LDK(KP559016994), Tl, Tk);
Chris@10 106 TO = VZMUL(TN, VFMAI(TF, TC));
Chris@10 107 TG = VZMUL(Tr, VFNMSI(TF, TC));
Chris@10 108 T12 = VZMUL(T11, VFMAI(TV, TU));
Chris@10 109 TW = VZMUL(TT, VFNMSI(TV, TU));
Chris@10 110 T16 = VZMULI(T15, VFMAI(TL, TK));
Chris@10 111 TM = VZMULI(TJ, VFNMSI(TL, TK));
Chris@10 112 T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
Chris@10 113 Tq = VZMULI(T1, VFMAI(Tp, Tm));
Chris@10 114 TX = VADD(TS, TW);
Chris@10 115 TY = VCONJ(VSUB(TW, TS));
Chris@10 116 T18 = VADD(T16, T17);
Chris@10 117 T19 = VCONJ(VSUB(T17, T16));
Chris@10 118 TQ = VCONJ(VSUB(TO, TM));
Chris@10 119 TP = VADD(TM, TO);
Chris@10 120 T13 = VADD(T10, T12);
Chris@10 121 T14 = VCONJ(VSUB(T12, T10));
Chris@10 122 TI = VCONJ(VSUB(TG, Tq));
Chris@10 123 TH = VADD(Tq, TG);
Chris@10 124 ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
Chris@10 125 ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
Chris@10 126 ST(&(Rp[0]), T18, ms, &(Rp[0]));
Chris@10 127 ST(&(Rm[0]), T19, -ms, &(Rm[0]));
Chris@10 128 ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
Chris@10 129 ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
Chris@10 130 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
Chris@10 131 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
Chris@10 132 ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
Chris@10 133 ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
Chris@10 134 }
Chris@10 135 }
Chris@10 136 }
Chris@10 137 VLEAVE();
Chris@10 138 }
Chris@10 139
Chris@10 140 static const tw_instr twinstr[] = {
Chris@10 141 VTW(1, 1),
Chris@10 142 VTW(1, 2),
Chris@10 143 VTW(1, 3),
Chris@10 144 VTW(1, 4),
Chris@10 145 VTW(1, 5),
Chris@10 146 VTW(1, 6),
Chris@10 147 VTW(1, 7),
Chris@10 148 VTW(1, 8),
Chris@10 149 VTW(1, 9),
Chris@10 150 {TW_NEXT, VL, 0}
Chris@10 151 };
Chris@10 152
Chris@10 153 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {33, 22, 28, 0} };
Chris@10 154
Chris@10 155 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
Chris@10 156 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
Chris@10 157 }
Chris@10 158 #else /* HAVE_FMA */
Chris@10 159
Chris@10 160 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
Chris@10 161
Chris@10 162 /*
Chris@10 163 * This function contains 61 FP additions, 30 FP multiplications,
Chris@10 164 * (or, 55 additions, 24 multiplications, 6 fused multiply/add),
Chris@10 165 * 81 stack variables, 4 constants, and 20 memory accesses
Chris@10 166 */
Chris@10 167 #include "hc2cbv.h"
Chris@10 168
Chris@10 169 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 170 {
Chris@10 171 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 173 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 175 {
Chris@10 176 INT m;
Chris@10 177 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@10 178 V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
Chris@10 179 V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
Chris@10 180 V Tf, Th, Tg, TF, TG, Te, Tn;
Chris@10 181 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 182 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@10 183 T4 = VCONJ(T3);
Chris@10 184 T5 = VSUB(T2, T4);
Chris@10 185 TE = VADD(T2, T4);
Chris@10 186 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 187 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 188 T8 = VCONJ(T7);
Chris@10 189 T9 = VSUB(T6, T8);
Chris@10 190 Tx = VADD(T6, T8);
Chris@10 191 Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 192 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 193 Tk = VCONJ(Tj);
Chris@10 194 Tm = VSUB(Tk, Tl);
Chris@10 195 TB = VADD(Tk, Tl);
Chris@10 196 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 197 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 198 Tb = VCONJ(Ta);
Chris@10 199 Td = VSUB(Tb, Tc);
Chris@10 200 Ty = VADD(Tb, Tc);
Chris@10 201 Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@10 202 Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 203 Th = VCONJ(Tg);
Chris@10 204 Ti = VSUB(Tf, Th);
Chris@10 205 TA = VADD(Tf, Th);
Chris@10 206 Ts = VSUB(T9, Td);
Chris@10 207 Tt = VSUB(Ti, Tm);
Chris@10 208 TC = VSUB(TA, TB);
Chris@10 209 Tz = VSUB(Tx, Ty);
Chris@10 210 TF = VADD(Tx, Ty);
Chris@10 211 TG = VADD(TA, TB);
Chris@10 212 TH = VADD(TF, TG);
Chris@10 213 TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
Chris@10 214 Te = VADD(T9, Td);
Chris@10 215 Tn = VADD(Ti, Tm);
Chris@10 216 To = VADD(Te, Tn);
Chris@10 217 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
Chris@10 218 {
Chris@10 219 V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
Chris@10 220 V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
Chris@10 221 V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
Chris@10 222 T1c = VADD(TE, TH);
Chris@10 223 TW = LDW(&(W[TWVL * 8]));
Chris@10 224 TX = VZMULI(TW, VADD(T5, To));
Chris@10 225 Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
Chris@10 226 TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
Chris@10 227 Tp = VFNMS(LDK(KP250000000), To, T5);
Chris@10 228 Tr = VSUB(Tp, Tq);
Chris@10 229 TP = VADD(Tq, Tp);
Chris@10 230 T1 = LDW(&(W[TWVL * 4]));
Chris@10 231 Tv = VZMULI(T1, VSUB(Tr, Tu));
Chris@10 232 T1a = LDW(&(W[0]));
Chris@10 233 T1b = VZMULI(T1a, VADD(TQ, TP));
Chris@10 234 TO = LDW(&(W[TWVL * 16]));
Chris@10 235 TR = VZMULI(TO, VSUB(TP, TQ));
Chris@10 236 T14 = LDW(&(W[TWVL * 12]));
Chris@10 237 T15 = VZMULI(T14, VADD(Tu, Tr));
Chris@10 238 TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
Chris@10 239 T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
Chris@10 240 TI = VFNMS(LDK(KP250000000), TH, TE);
Chris@10 241 TK = VSUB(TI, TJ);
Chris@10 242 TZ = VADD(TJ, TI);
Chris@10 243 Tw = LDW(&(W[TWVL * 2]));
Chris@10 244 TL = VZMUL(Tw, VADD(TD, TK));
Chris@10 245 T16 = LDW(&(W[TWVL * 10]));
Chris@10 246 T17 = VZMUL(T16, VADD(T10, TZ));
Chris@10 247 TS = LDW(&(W[TWVL * 14]));
Chris@10 248 TT = VZMUL(TS, VSUB(TK, TD));
Chris@10 249 TY = LDW(&(W[TWVL * 6]));
Chris@10 250 T11 = VZMUL(TY, VSUB(TZ, T10));
Chris@10 251 TM = VADD(Tv, TL);
Chris@10 252 ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
Chris@10 253 TU = VADD(TR, TT);
Chris@10 254 ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
Chris@10 255 T1e = VCONJ(VSUB(T1c, T1b));
Chris@10 256 ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
Chris@10 257 TN = VCONJ(VSUB(TL, Tv));
Chris@10 258 ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
Chris@10 259 T1d = VADD(T1b, T1c);
Chris@10 260 ST(&(Rp[0]), T1d, ms, &(Rp[0]));
Chris@10 261 T19 = VCONJ(VSUB(T17, T15));
Chris@10 262 ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
Chris@10 263 T13 = VCONJ(VSUB(T11, TX));
Chris@10 264 ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
Chris@10 265 TV = VCONJ(VSUB(TT, TR));
Chris@10 266 ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
Chris@10 267 T18 = VADD(T15, T17);
Chris@10 268 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
Chris@10 269 T12 = VADD(TX, T11);
Chris@10 270 ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
Chris@10 271 }
Chris@10 272 }
Chris@10 273 }
Chris@10 274 VLEAVE();
Chris@10 275 }
Chris@10 276
Chris@10 277 static const tw_instr twinstr[] = {
Chris@10 278 VTW(1, 1),
Chris@10 279 VTW(1, 2),
Chris@10 280 VTW(1, 3),
Chris@10 281 VTW(1, 4),
Chris@10 282 VTW(1, 5),
Chris@10 283 VTW(1, 6),
Chris@10 284 VTW(1, 7),
Chris@10 285 VTW(1, 8),
Chris@10 286 VTW(1, 9),
Chris@10 287 {TW_NEXT, VL, 0}
Chris@10 288 };
Chris@10 289
Chris@10 290 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {55, 24, 6, 0} };
Chris@10 291
Chris@10 292 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
Chris@10 293 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
Chris@10 294 }
Chris@10 295 #endif /* HAVE_FMA */