Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:45 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 38 FP additions, 30 FP multiplications,
|
Chris@10
|
32 * (or, 12 additions, 4 multiplications, 26 fused multiply/add),
|
Chris@10
|
33 * 57 stack variables, 18 constants, and 18 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "r2cf.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DK(KP907603734, +0.907603734547952313649323976213898122064543220);
|
Chris@10
|
40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
41 DK(KP347296355, +0.347296355333860697703433253538629592000751354);
|
Chris@10
|
42 DK(KP666666666, +0.666666666666666666666666666666666666666666667);
|
Chris@10
|
43 DK(KP879385241, +0.879385241571816768108218554649462939872416269);
|
Chris@10
|
44 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
45 DK(KP673648177, +0.673648177666930348851716626769314796000375677);
|
Chris@10
|
46 DK(KP898197570, +0.898197570222573798468955502359086394667167570);
|
Chris@10
|
47 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
48 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
49 DK(KP203604859, +0.203604859554852403062088995281827210665664861);
|
Chris@10
|
50 DK(KP152703644, +0.152703644666139302296566746461370407999248646);
|
Chris@10
|
51 DK(KP394930843, +0.394930843634698457567117349190734585290304520);
|
Chris@10
|
52 DK(KP968908795, +0.968908795874236621082202410917456709164223497);
|
Chris@10
|
53 DK(KP726681596, +0.726681596905677465811651808188092531873167623);
|
Chris@10
|
54 DK(KP586256827, +0.586256827714544512072145703099641959914944179);
|
Chris@10
|
55 DK(KP184792530, +0.184792530904095372701352047572203755870913560);
|
Chris@10
|
56 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
57 {
|
Chris@10
|
58 INT i;
|
Chris@10
|
59 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
|
Chris@10
|
60 E Tp, Tz, Tw, Ts, TA;
|
Chris@10
|
61 {
|
Chris@10
|
62 E T1, T6, Tb, T7, T4, To, T8, Tc, Td, T2, T3;
|
Chris@10
|
63 T1 = R0[0];
|
Chris@10
|
64 T2 = R1[WS(rs, 1)];
|
Chris@10
|
65 T3 = R0[WS(rs, 3)];
|
Chris@10
|
66 T6 = R1[0];
|
Chris@10
|
67 Tb = R0[WS(rs, 1)];
|
Chris@10
|
68 T7 = R0[WS(rs, 2)];
|
Chris@10
|
69 T4 = T2 + T3;
|
Chris@10
|
70 To = T3 - T2;
|
Chris@10
|
71 T8 = R1[WS(rs, 3)];
|
Chris@10
|
72 Tc = R1[WS(rs, 2)];
|
Chris@10
|
73 Td = R0[WS(rs, 4)];
|
Chris@10
|
74 {
|
Chris@10
|
75 E T5, T9, Tk, Te, Ti;
|
Chris@10
|
76 T5 = T1 + T4;
|
Chris@10
|
77 Tp = FNMS(KP500000000, T4, T1);
|
Chris@10
|
78 T9 = T7 + T8;
|
Chris@10
|
79 Tk = T7 - T8;
|
Chris@10
|
80 Te = Tc + Td;
|
Chris@10
|
81 Ti = Td - Tc;
|
Chris@10
|
82 {
|
Chris@10
|
83 E Tl, Ta, Tu, Tf, Th;
|
Chris@10
|
84 Tl = FMS(KP500000000, T9, T6);
|
Chris@10
|
85 Ta = T6 + T9;
|
Chris@10
|
86 Tu = FMA(KP184792530, Tk, Ti);
|
Chris@10
|
87 Tf = Tb + Te;
|
Chris@10
|
88 Th = FNMS(KP500000000, Te, Tb);
|
Chris@10
|
89 {
|
Chris@10
|
90 E Tq, Ty, Tm, Tt;
|
Chris@10
|
91 Tq = FMA(KP586256827, Tl, Ti);
|
Chris@10
|
92 Ty = FMA(KP726681596, Tk, Tl);
|
Chris@10
|
93 Tm = FNMS(KP968908795, Tl, Tk);
|
Chris@10
|
94 Tt = FMA(KP394930843, Th, To);
|
Chris@10
|
95 {
|
Chris@10
|
96 E Tj, Tx, Tg, Tv;
|
Chris@10
|
97 Tj = FNMS(KP152703644, Ti, Th);
|
Chris@10
|
98 Tx = FMA(KP203604859, Th, Ti);
|
Chris@10
|
99 Tg = Ta + Tf;
|
Chris@10
|
100 Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
|
Chris@10
|
101 Tv = FNMS(KP939692620, Tu, Tt);
|
Chris@10
|
102 {
|
Chris@10
|
103 E TB, Tn, TC, Tr;
|
Chris@10
|
104 TB = FMA(KP898197570, Ty, Tx);
|
Chris@10
|
105 Tz = FNMS(KP898197570, Ty, Tx);
|
Chris@10
|
106 Tw = FNMS(KP673648177, Tm, Tj);
|
Chris@10
|
107 Tn = FMA(KP673648177, Tm, Tj);
|
Chris@10
|
108 Cr[0] = T5 + Tg;
|
Chris@10
|
109 Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
|
Chris@10
|
110 Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl));
|
Chris@10
|
111 Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn)));
|
Chris@10
|
112 TC = FMA(KP666666666, Tn, TB);
|
Chris@10
|
113 Tr = FNMS(KP347296355, Tq, Tk);
|
Chris@10
|
114 Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To));
|
Chris@10
|
115 Ts = FNMS(KP907603734, Tr, Th);
|
Chris@10
|
116 }
|
Chris@10
|
117 }
|
Chris@10
|
118 }
|
Chris@10
|
119 }
|
Chris@10
|
120 }
|
Chris@10
|
121 }
|
Chris@10
|
122 Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp);
|
Chris@10
|
123 TA = FNMS(KP500000000, Tz, Tw);
|
Chris@10
|
124 Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp);
|
Chris@10
|
125 Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp);
|
Chris@10
|
126 }
|
Chris@10
|
127 }
|
Chris@10
|
128 }
|
Chris@10
|
129
|
Chris@10
|
130 static const kr2c_desc desc = { 9, "r2cf_9", {12, 4, 26, 0}, &GENUS };
|
Chris@10
|
131
|
Chris@10
|
132 void X(codelet_r2cf_9) (planner *p) {
|
Chris@10
|
133 X(kr2c_register) (p, r2cf_9, &desc);
|
Chris@10
|
134 }
|
Chris@10
|
135
|
Chris@10
|
136 #else /* HAVE_FMA */
|
Chris@10
|
137
|
Chris@10
|
138 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */
|
Chris@10
|
139
|
Chris@10
|
140 /*
|
Chris@10
|
141 * This function contains 38 FP additions, 26 FP multiplications,
|
Chris@10
|
142 * (or, 21 additions, 9 multiplications, 17 fused multiply/add),
|
Chris@10
|
143 * 36 stack variables, 14 constants, and 18 memory accesses
|
Chris@10
|
144 */
|
Chris@10
|
145 #include "r2cf.h"
|
Chris@10
|
146
|
Chris@10
|
147 static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
148 {
|
Chris@10
|
149 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
150 DK(KP296198132, +0.296198132726023843175338011893050938967728390);
|
Chris@10
|
151 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
Chris@10
|
152 DK(KP813797681, +0.813797681349373692844693217248393223289101568);
|
Chris@10
|
153 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
154 DK(KP150383733, +0.150383733180435296639271897612501926072238258);
|
Chris@10
|
155 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
Chris@10
|
156 DK(KP663413948, +0.663413948168938396205421319635891297216863310);
|
Chris@10
|
157 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
158 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
Chris@10
|
159 DK(KP556670399, +0.556670399226419366452912952047023132968291906);
|
Chris@10
|
160 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
Chris@10
|
161 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
162 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
163 {
|
Chris@10
|
164 INT i;
|
Chris@10
|
165 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
|
Chris@10
|
166 E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg;
|
Chris@10
|
167 T1 = R0[0];
|
Chris@10
|
168 T2 = R1[WS(rs, 1)];
|
Chris@10
|
169 T3 = R0[WS(rs, 3)];
|
Chris@10
|
170 T4 = T2 + T3;
|
Chris@10
|
171 Tr = T3 - T2;
|
Chris@10
|
172 {
|
Chris@10
|
173 E T6, T7, T8, T9;
|
Chris@10
|
174 T6 = R1[0];
|
Chris@10
|
175 T7 = R0[WS(rs, 2)];
|
Chris@10
|
176 T8 = R1[WS(rs, 3)];
|
Chris@10
|
177 T9 = T7 + T8;
|
Chris@10
|
178 Ta = T6 + T9;
|
Chris@10
|
179 Tl = T8 - T7;
|
Chris@10
|
180 Ti = FNMS(KP500000000, T9, T6);
|
Chris@10
|
181 }
|
Chris@10
|
182 {
|
Chris@10
|
183 E Tb, Tc, Td, Te;
|
Chris@10
|
184 Tb = R0[WS(rs, 1)];
|
Chris@10
|
185 Tc = R1[WS(rs, 2)];
|
Chris@10
|
186 Td = R0[WS(rs, 4)];
|
Chris@10
|
187 Te = Tc + Td;
|
Chris@10
|
188 Tf = Tb + Te;
|
Chris@10
|
189 Tk = FNMS(KP500000000, Te, Tb);
|
Chris@10
|
190 Tj = Td - Tc;
|
Chris@10
|
191 }
|
Chris@10
|
192 Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
|
Chris@10
|
193 T5 = T1 + T4;
|
Chris@10
|
194 Tg = Ta + Tf;
|
Chris@10
|
195 Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
|
Chris@10
|
196 Cr[0] = T5 + Tg;
|
Chris@10
|
197 {
|
Chris@10
|
198 E Tt, Th, Tm, Tn, To, Tp, Tq, Ts;
|
Chris@10
|
199 Tt = KP866025403 * Tr;
|
Chris@10
|
200 Th = FNMS(KP500000000, T4, T1);
|
Chris@10
|
201 Tm = FMA(KP766044443, Ti, KP556670399 * Tl);
|
Chris@10
|
202 Tn = FMA(KP173648177, Tk, KP852868531 * Tj);
|
Chris@10
|
203 To = Tm + Tn;
|
Chris@10
|
204 Tp = FNMS(KP642787609, Ti, KP663413948 * Tl);
|
Chris@10
|
205 Tq = FNMS(KP984807753, Tk, KP150383733 * Tj);
|
Chris@10
|
206 Ts = Tp + Tq;
|
Chris@10
|
207 Cr[WS(csr, 1)] = Th + To;
|
Chris@10
|
208 Ci[WS(csi, 1)] = Tt + Ts;
|
Chris@10
|
209 Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To);
|
Chris@10
|
210 Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm)));
|
Chris@10
|
211 Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt;
|
Chris@10
|
212 Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl);
|
Chris@10
|
213 }
|
Chris@10
|
214 }
|
Chris@10
|
215 }
|
Chris@10
|
216 }
|
Chris@10
|
217
|
Chris@10
|
218 static const kr2c_desc desc = { 9, "r2cf_9", {21, 9, 17, 0}, &GENUS };
|
Chris@10
|
219
|
Chris@10
|
220 void X(codelet_r2cf_9) (planner *p) {
|
Chris@10
|
221 X(kr2c_register) (p, r2cf_9, &desc);
|
Chris@10
|
222 }
|
Chris@10
|
223
|
Chris@10
|
224 #endif /* HAVE_FMA */
|