annotate src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_11.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:45 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 60 FP additions, 50 FP multiplications,
Chris@10 32 * (or, 15 additions, 5 multiplications, 45 fused multiply/add),
Chris@10 33 * 51 stack variables, 10 constants, and 22 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cf.h"
Chris@10 36
Chris@10 37 static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP959492973, +0.959492973614497389890368057066327699062454848);
Chris@10 40 DK(KP876768831, +0.876768831002589333891339807079336796764054852);
Chris@10 41 DK(KP918985947, +0.918985947228994779780736114132655398124909697);
Chris@10 42 DK(KP989821441, +0.989821441880932732376092037776718787376519372);
Chris@10 43 DK(KP778434453, +0.778434453334651800608337670740821884709317477);
Chris@10 44 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
Chris@10 45 DK(KP715370323, +0.715370323453429719112414662767260662417897278);
Chris@10 46 DK(KP634356270, +0.634356270682424498893150776899916060542806975);
Chris@10 47 DK(KP342584725, +0.342584725681637509502641509861112333758894680);
Chris@10 48 DK(KP521108558, +0.521108558113202722944698153526659300680427422);
Chris@10 49 {
Chris@10 50 INT i;
Chris@10 51 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
Chris@10 52 E T1, Tg, TF, TB, TI, TL, Tz, TA;
Chris@10 53 {
Chris@10 54 E T4, TC, TE, T7, TD, Ta, TS, TG, TJ, Td, TP, TM, Ty, Tq, Th;
Chris@10 55 E Tt, Tl;
Chris@10 56 T1 = R0[0];
Chris@10 57 {
Chris@10 58 E Tb, Tc, Tx, Tp;
Chris@10 59 {
Chris@10 60 E T2, T3, Te, Tf;
Chris@10 61 T2 = R1[0];
Chris@10 62 T3 = R0[WS(rs, 5)];
Chris@10 63 Te = R1[WS(rs, 2)];
Chris@10 64 Tf = R0[WS(rs, 3)];
Chris@10 65 {
Chris@10 66 E T5, T6, T8, T9;
Chris@10 67 T5 = R0[WS(rs, 1)];
Chris@10 68 T4 = T2 + T3;
Chris@10 69 TC = T3 - T2;
Chris@10 70 Tg = Te + Tf;
Chris@10 71 TE = Tf - Te;
Chris@10 72 T6 = R1[WS(rs, 4)];
Chris@10 73 T8 = R1[WS(rs, 1)];
Chris@10 74 T9 = R0[WS(rs, 4)];
Chris@10 75 Tb = R0[WS(rs, 2)];
Chris@10 76 T7 = T5 + T6;
Chris@10 77 TD = T5 - T6;
Chris@10 78 Ta = T8 + T9;
Chris@10 79 TF = T9 - T8;
Chris@10 80 Tc = R1[WS(rs, 3)];
Chris@10 81 }
Chris@10 82 }
Chris@10 83 TS = FMA(KP521108558, TC, TD);
Chris@10 84 TG = FMA(KP521108558, TF, TE);
Chris@10 85 TJ = FMA(KP521108558, TE, TC);
Chris@10 86 Td = Tb + Tc;
Chris@10 87 TB = Tb - Tc;
Chris@10 88 Tx = FNMS(KP342584725, Ta, T7);
Chris@10 89 Tp = FNMS(KP342584725, T4, Ta);
Chris@10 90 TP = FNMS(KP521108558, TB, TF);
Chris@10 91 TM = FNMS(KP521108558, TD, TB);
Chris@10 92 Ty = FNMS(KP634356270, Tx, Td);
Chris@10 93 Tq = FNMS(KP634356270, Tp, Tg);
Chris@10 94 Th = FNMS(KP342584725, Tg, Td);
Chris@10 95 Tt = FNMS(KP342584725, Td, T4);
Chris@10 96 Tl = FNMS(KP342584725, T7, Tg);
Chris@10 97 }
Chris@10 98 {
Chris@10 99 E Tu, Ts, TN, Tv;
Chris@10 100 {
Chris@10 101 E Tm, TU, Tj, Ti, TT;
Chris@10 102 TT = FMA(KP715370323, TS, TF);
Chris@10 103 Ti = FNMS(KP634356270, Th, Ta);
Chris@10 104 Tu = FNMS(KP634356270, Tt, T7);
Chris@10 105 Tm = FNMS(KP634356270, Tl, T4);
Chris@10 106 TU = FMA(KP830830026, TT, TB);
Chris@10 107 Tj = FNMS(KP778434453, Ti, T7);
Chris@10 108 {
Chris@10 109 E Tk, TR, To, Tn, TQ, Tr;
Chris@10 110 TQ = FMA(KP715370323, TP, TC);
Chris@10 111 Tn = FNMS(KP778434453, Tm, Ta);
Chris@10 112 Ci[WS(csi, 5)] = KP989821441 * (FMA(KP918985947, TU, TE));
Chris@10 113 Tk = FNMS(KP876768831, Tj, T4);
Chris@10 114 TR = FNMS(KP830830026, TQ, TE);
Chris@10 115 To = FNMS(KP876768831, Tn, Td);
Chris@10 116 Tr = FNMS(KP778434453, Tq, Td);
Chris@10 117 Cr[WS(csr, 5)] = FNMS(KP959492973, Tk, T1);
Chris@10 118 Ci[WS(csi, 4)] = KP989821441 * (FNMS(KP918985947, TR, TD));
Chris@10 119 Cr[WS(csr, 4)] = FNMS(KP959492973, To, T1);
Chris@10 120 Ts = FNMS(KP876768831, Tr, T7);
Chris@10 121 }
Chris@10 122 }
Chris@10 123 TN = FNMS(KP715370323, TM, TE);
Chris@10 124 Tv = FNMS(KP778434453, Tu, Tg);
Chris@10 125 Cr[0] = T1 + T4 + T7 + Ta + Td + Tg;
Chris@10 126 Cr[WS(csr, 3)] = FNMS(KP959492973, Ts, T1);
Chris@10 127 {
Chris@10 128 E TO, Tw, TH, TK;
Chris@10 129 TO = FNMS(KP830830026, TN, TF);
Chris@10 130 Tw = FNMS(KP876768831, Tv, Ta);
Chris@10 131 TH = FMA(KP715370323, TG, TD);
Chris@10 132 TK = FNMS(KP715370323, TJ, TB);
Chris@10 133 Ci[WS(csi, 3)] = KP989821441 * (FNMS(KP918985947, TO, TC));
Chris@10 134 Cr[WS(csr, 2)] = FNMS(KP959492973, Tw, T1);
Chris@10 135 TI = FNMS(KP830830026, TH, TC);
Chris@10 136 TL = FMA(KP830830026, TK, TD);
Chris@10 137 Tz = FNMS(KP778434453, Ty, T4);
Chris@10 138 }
Chris@10 139 }
Chris@10 140 }
Chris@10 141 Ci[WS(csi, 2)] = KP989821441 * (FMA(KP918985947, TI, TB));
Chris@10 142 Ci[WS(csi, 1)] = KP989821441 * (FNMS(KP918985947, TL, TF));
Chris@10 143 TA = FNMS(KP876768831, Tz, Tg);
Chris@10 144 Cr[WS(csr, 1)] = FNMS(KP959492973, TA, T1);
Chris@10 145 }
Chris@10 146 }
Chris@10 147 }
Chris@10 148
Chris@10 149 static const kr2c_desc desc = { 11, "r2cf_11", {15, 5, 45, 0}, &GENUS };
Chris@10 150
Chris@10 151 void X(codelet_r2cf_11) (planner *p) {
Chris@10 152 X(kr2c_register) (p, r2cf_11, &desc);
Chris@10 153 }
Chris@10 154
Chris@10 155 #else /* HAVE_FMA */
Chris@10 156
Chris@10 157 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */
Chris@10 158
Chris@10 159 /*
Chris@10 160 * This function contains 60 FP additions, 50 FP multiplications,
Chris@10 161 * (or, 20 additions, 10 multiplications, 40 fused multiply/add),
Chris@10 162 * 28 stack variables, 10 constants, and 22 memory accesses
Chris@10 163 */
Chris@10 164 #include "r2cf.h"
Chris@10 165
Chris@10 166 static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 167 {
Chris@10 168 DK(KP654860733, +0.654860733945285064056925072466293553183791199);
Chris@10 169 DK(KP142314838, +0.142314838273285140443792668616369668791051361);
Chris@10 170 DK(KP959492973, +0.959492973614497389890368057066327699062454848);
Chris@10 171 DK(KP415415013, +0.415415013001886425529274149229623203524004910);
Chris@10 172 DK(KP841253532, +0.841253532831181168861811648919367717513292498);
Chris@10 173 DK(KP989821441, +0.989821441880932732376092037776718787376519372);
Chris@10 174 DK(KP909631995, +0.909631995354518371411715383079028460060241051);
Chris@10 175 DK(KP281732556, +0.281732556841429697711417915346616899035777899);
Chris@10 176 DK(KP540640817, +0.540640817455597582107635954318691695431770608);
Chris@10 177 DK(KP755749574, +0.755749574354258283774035843972344420179717445);
Chris@10 178 {
Chris@10 179 INT i;
Chris@10 180 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
Chris@10 181 E T1, T4, Tl, Tg, Th, Td, Ti, Ta, Tk, T7, Tj, Tb, Tc;
Chris@10 182 T1 = R0[0];
Chris@10 183 {
Chris@10 184 E T2, T3, Te, Tf;
Chris@10 185 T2 = R0[WS(rs, 1)];
Chris@10 186 T3 = R1[WS(rs, 4)];
Chris@10 187 T4 = T2 + T3;
Chris@10 188 Tl = T3 - T2;
Chris@10 189 Te = R1[0];
Chris@10 190 Tf = R0[WS(rs, 5)];
Chris@10 191 Tg = Te + Tf;
Chris@10 192 Th = Tf - Te;
Chris@10 193 }
Chris@10 194 Tb = R1[WS(rs, 1)];
Chris@10 195 Tc = R0[WS(rs, 4)];
Chris@10 196 Td = Tb + Tc;
Chris@10 197 Ti = Tc - Tb;
Chris@10 198 {
Chris@10 199 E T8, T9, T5, T6;
Chris@10 200 T8 = R1[WS(rs, 2)];
Chris@10 201 T9 = R0[WS(rs, 3)];
Chris@10 202 Ta = T8 + T9;
Chris@10 203 Tk = T9 - T8;
Chris@10 204 T5 = R0[WS(rs, 2)];
Chris@10 205 T6 = R1[WS(rs, 3)];
Chris@10 206 T7 = T5 + T6;
Chris@10 207 Tj = T6 - T5;
Chris@10 208 }
Chris@10 209 Ci[WS(csi, 4)] = FMA(KP755749574, Th, KP540640817 * Ti) + FNMS(KP909631995, Tk, KP281732556 * Tj) - (KP989821441 * Tl);
Chris@10 210 Cr[WS(csr, 4)] = FMA(KP841253532, Td, T1) + FNMS(KP959492973, T7, KP415415013 * Ta) + FNMA(KP142314838, T4, KP654860733 * Tg);
Chris@10 211 Ci[WS(csi, 2)] = FMA(KP909631995, Th, KP755749574 * Tl) + FNMA(KP540640817, Tk, KP989821441 * Tj) - (KP281732556 * Ti);
Chris@10 212 Ci[WS(csi, 5)] = FMA(KP281732556, Th, KP755749574 * Ti) + FNMS(KP909631995, Tj, KP989821441 * Tk) - (KP540640817 * Tl);
Chris@10 213 Ci[WS(csi, 1)] = FMA(KP540640817, Th, KP909631995 * Tl) + FMA(KP989821441, Ti, KP755749574 * Tj) + (KP281732556 * Tk);
Chris@10 214 Ci[WS(csi, 3)] = FMA(KP989821441, Th, KP540640817 * Tj) + FNMS(KP909631995, Ti, KP755749574 * Tk) - (KP281732556 * Tl);
Chris@10 215 Cr[WS(csr, 3)] = FMA(KP415415013, Td, T1) + FNMS(KP654860733, Ta, KP841253532 * T7) + FNMA(KP959492973, T4, KP142314838 * Tg);
Chris@10 216 Cr[WS(csr, 1)] = FMA(KP841253532, Tg, T1) + FNMS(KP959492973, Ta, KP415415013 * T4) + FNMA(KP654860733, T7, KP142314838 * Td);
Chris@10 217 Cr[0] = T1 + Tg + T4 + Td + T7 + Ta;
Chris@10 218 Cr[WS(csr, 2)] = FMA(KP415415013, Tg, T1) + FNMS(KP142314838, T7, KP841253532 * Ta) + FNMA(KP959492973, Td, KP654860733 * T4);
Chris@10 219 Cr[WS(csr, 5)] = FMA(KP841253532, T4, T1) + FNMS(KP142314838, Ta, KP415415013 * T7) + FNMA(KP654860733, Td, KP959492973 * Tg);
Chris@10 220 }
Chris@10 221 }
Chris@10 222 }
Chris@10 223
Chris@10 224 static const kr2c_desc desc = { 11, "r2cf_11", {20, 10, 40, 0}, &GENUS };
Chris@10 225
Chris@10 226 void X(codelet_r2cf_11) (planner *p) {
Chris@10 227 X(kr2c_register) (p, r2cf_11, &desc);
Chris@10 228 }
Chris@10 229
Chris@10 230 #endif /* HAVE_FMA */