annotate src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_7.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:13 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -name r2cfII_7 -dft-II -include r2cfII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 24 FP additions, 18 FP multiplications,
Chris@10 32 * (or, 9 additions, 3 multiplications, 15 fused multiply/add),
Chris@10 33 * 25 stack variables, 6 constants, and 14 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cfII.h"
Chris@10 36
Chris@10 37 static void r2cfII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 40 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 41 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 42 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 43 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 45 {
Chris@10 46 INT i;
Chris@10 47 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
Chris@10 48 E Td, Tk;
Chris@10 49 {
Chris@10 50 E T4, T3, Te, T5, T9, Tf, T6, Tg, Tj;
Chris@10 51 Td = R0[0];
Chris@10 52 {
Chris@10 53 E T1, T2, T7, T8;
Chris@10 54 T1 = R0[WS(rs, 1)];
Chris@10 55 T2 = R1[WS(rs, 2)];
Chris@10 56 T7 = R1[WS(rs, 1)];
Chris@10 57 T8 = R0[WS(rs, 2)];
Chris@10 58 T4 = R1[0];
Chris@10 59 T3 = T1 + T2;
Chris@10 60 Te = T1 - T2;
Chris@10 61 T5 = R0[WS(rs, 3)];
Chris@10 62 T9 = T7 + T8;
Chris@10 63 Tf = T8 - T7;
Chris@10 64 }
Chris@10 65 T6 = T4 + T5;
Chris@10 66 Tg = T5 - T4;
Chris@10 67 Tj = FNMS(KP356895867, Tf, Te);
Chris@10 68 {
Chris@10 69 E Ta, Th, Tl, Tb, Ti, Tm, Tc;
Chris@10 70 Tb = FNMS(KP554958132, T3, T9);
Chris@10 71 Ta = FMA(KP554958132, T9, T6);
Chris@10 72 Th = FNMS(KP356895867, Tg, Tf);
Chris@10 73 Tl = FNMS(KP356895867, Te, Tg);
Chris@10 74 Ci[WS(csi, 1)] = -(KP974927912 * (FNMS(KP801937735, Tb, T6)));
Chris@10 75 Ci[WS(csi, 2)] = KP974927912 * (FNMS(KP801937735, Ta, T3));
Chris@10 76 Ti = FNMS(KP692021471, Th, Te);
Chris@10 77 Tm = FNMS(KP692021471, Tl, Tf);
Chris@10 78 Cr[WS(csr, 3)] = Te + Tg + Tf + Td;
Chris@10 79 Tc = FMA(KP554958132, T6, T3);
Chris@10 80 Cr[WS(csr, 1)] = FNMS(KP900968867, Ti, Td);
Chris@10 81 Cr[WS(csr, 2)] = FNMS(KP900968867, Tm, Td);
Chris@10 82 Tk = FNMS(KP692021471, Tj, Tg);
Chris@10 83 Ci[0] = -(KP974927912 * (FMA(KP801937735, Tc, T9)));
Chris@10 84 }
Chris@10 85 }
Chris@10 86 Cr[0] = FNMS(KP900968867, Tk, Td);
Chris@10 87 }
Chris@10 88 }
Chris@10 89 }
Chris@10 90
Chris@10 91 static const kr2c_desc desc = { 7, "r2cfII_7", {9, 3, 15, 0}, &GENUS };
Chris@10 92
Chris@10 93 void X(codelet_r2cfII_7) (planner *p) {
Chris@10 94 X(kr2c_register) (p, r2cfII_7, &desc);
Chris@10 95 }
Chris@10 96
Chris@10 97 #else /* HAVE_FMA */
Chris@10 98
Chris@10 99 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 7 -name r2cfII_7 -dft-II -include r2cfII.h */
Chris@10 100
Chris@10 101 /*
Chris@10 102 * This function contains 24 FP additions, 18 FP multiplications,
Chris@10 103 * (or, 12 additions, 6 multiplications, 12 fused multiply/add),
Chris@10 104 * 20 stack variables, 6 constants, and 14 memory accesses
Chris@10 105 */
Chris@10 106 #include "r2cfII.h"
Chris@10 107
Chris@10 108 static void r2cfII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 109 {
Chris@10 110 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 111 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@10 112 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@10 113 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@10 114 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 115 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@10 116 {
Chris@10 117 INT i;
Chris@10 118 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
Chris@10 119 E T1, Ta, Td, T4, Tb, T7, Tc, T8, T9;
Chris@10 120 T1 = R0[0];
Chris@10 121 T8 = R1[0];
Chris@10 122 T9 = R0[WS(rs, 3)];
Chris@10 123 Ta = T8 - T9;
Chris@10 124 Td = T8 + T9;
Chris@10 125 {
Chris@10 126 E T2, T3, T5, T6;
Chris@10 127 T2 = R0[WS(rs, 1)];
Chris@10 128 T3 = R1[WS(rs, 2)];
Chris@10 129 T4 = T2 - T3;
Chris@10 130 Tb = T2 + T3;
Chris@10 131 T5 = R1[WS(rs, 1)];
Chris@10 132 T6 = R0[WS(rs, 2)];
Chris@10 133 T7 = T5 - T6;
Chris@10 134 Tc = T5 + T6;
Chris@10 135 }
Chris@10 136 Ci[0] = -(FMA(KP781831482, Tb, KP974927912 * Tc) + (KP433883739 * Td));
Chris@10 137 Ci[WS(csi, 1)] = FNMS(KP974927912, Td, KP781831482 * Tc) - (KP433883739 * Tb);
Chris@10 138 Cr[0] = FMA(KP623489801, T4, T1) + FMA(KP222520933, T7, KP900968867 * Ta);
Chris@10 139 Ci[WS(csi, 2)] = FNMS(KP781831482, Td, KP974927912 * Tb) - (KP433883739 * Tc);
Chris@10 140 Cr[WS(csr, 2)] = FMA(KP900968867, T7, T1) + FNMA(KP623489801, Ta, KP222520933 * T4);
Chris@10 141 Cr[WS(csr, 1)] = FMA(KP222520933, Ta, T1) + FNMA(KP623489801, T7, KP900968867 * T4);
Chris@10 142 Cr[WS(csr, 3)] = T1 + T4 - (T7 + Ta);
Chris@10 143 }
Chris@10 144 }
Chris@10 145 }
Chris@10 146
Chris@10 147 static const kr2c_desc desc = { 7, "r2cfII_7", {12, 6, 12, 0}, &GENUS };
Chris@10 148
Chris@10 149 void X(codelet_r2cfII_7) (planner *p) {
Chris@10 150 X(kr2c_register) (p, r2cfII_7, &desc);
Chris@10 151 }
Chris@10 152
Chris@10 153 #endif /* HAVE_FMA */