Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:40:23 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include r2cfII.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 102 FP additions, 63 FP multiplications,
|
Chris@10
|
32 * (or, 39 additions, 0 multiplications, 63 fused multiply/add),
|
Chris@10
|
33 * 67 stack variables, 10 constants, and 40 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "r2cfII.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
40 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
42 DK(KP690983005, +0.690983005625052575897706582817180941139845410);
|
Chris@10
|
43 DK(KP552786404, +0.552786404500042060718165266253744752911876328);
|
Chris@10
|
44 DK(KP447213595, +0.447213595499957939281834733746255247088123672);
|
Chris@10
|
45 DK(KP809016994, +0.809016994374947424102293417182819058860154590);
|
Chris@10
|
46 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
47 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
48 DK(KP381966011, +0.381966011250105151795413165634361882279690820);
|
Chris@10
|
49 {
|
Chris@10
|
50 INT i;
|
Chris@10
|
51 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
|
Chris@10
|
52 E Tv, TK, TN, Th, T1l, T1n, Ts, TH;
|
Chris@10
|
53 {
|
Chris@10
|
54 E Ti, T1d, T1f, T1e, T1g, T1p, TS, Tg, To, T8, T7, T19, T1r, T1k, Tx;
|
Chris@10
|
55 E Tp, TX, Ty, TF, Tr, TV, Tz, TA, TI;
|
Chris@10
|
56 {
|
Chris@10
|
57 E Ta, Tb, Td, Te;
|
Chris@10
|
58 Ti = R1[WS(rs, 2)];
|
Chris@10
|
59 T1d = R0[WS(rs, 5)];
|
Chris@10
|
60 Ta = R0[WS(rs, 9)];
|
Chris@10
|
61 Tb = R0[WS(rs, 1)];
|
Chris@10
|
62 Td = R0[WS(rs, 3)];
|
Chris@10
|
63 Te = R0[WS(rs, 7)];
|
Chris@10
|
64 {
|
Chris@10
|
65 E T1, T2, T5, T3, T4, T1i, Tc, Tf;
|
Chris@10
|
66 T1 = R0[0];
|
Chris@10
|
67 T1f = Ta + Tb;
|
Chris@10
|
68 Tc = Ta - Tb;
|
Chris@10
|
69 T1e = Td + Te;
|
Chris@10
|
70 Tf = Td - Te;
|
Chris@10
|
71 T2 = R0[WS(rs, 4)];
|
Chris@10
|
72 T5 = R0[WS(rs, 6)];
|
Chris@10
|
73 T1g = FMA(KP381966011, T1f, T1e);
|
Chris@10
|
74 T1p = FMA(KP381966011, T1e, T1f);
|
Chris@10
|
75 TS = FMA(KP618033988, Tc, Tf);
|
Chris@10
|
76 Tg = FNMS(KP618033988, Tf, Tc);
|
Chris@10
|
77 T3 = R0[WS(rs, 8)];
|
Chris@10
|
78 T4 = R0[WS(rs, 2)];
|
Chris@10
|
79 T1i = T2 + T5;
|
Chris@10
|
80 {
|
Chris@10
|
81 E Tj, Tu, Tm, Tt, Tn, Tq, TU;
|
Chris@10
|
82 Tj = R1[WS(rs, 8)];
|
Chris@10
|
83 To = R1[WS(rs, 6)];
|
Chris@10
|
84 {
|
Chris@10
|
85 E T6, T1j, Tk, Tl;
|
Chris@10
|
86 T6 = T2 + T3 - T4 - T5;
|
Chris@10
|
87 T8 = (T3 + T5 - T2) - T4;
|
Chris@10
|
88 T1j = T3 + T4;
|
Chris@10
|
89 Tk = R1[0];
|
Chris@10
|
90 Tl = R1[WS(rs, 4)];
|
Chris@10
|
91 T7 = FNMS(KP250000000, T6, T1);
|
Chris@10
|
92 T19 = T1 + T6;
|
Chris@10
|
93 T1r = FNMS(KP618033988, T1i, T1j);
|
Chris@10
|
94 T1k = FMA(KP618033988, T1j, T1i);
|
Chris@10
|
95 Tu = Tk - Tl;
|
Chris@10
|
96 Tm = Tk + Tl;
|
Chris@10
|
97 }
|
Chris@10
|
98 Tt = To + Tj;
|
Chris@10
|
99 Tx = R1[WS(rs, 7)];
|
Chris@10
|
100 Tn = Tj - Tm;
|
Chris@10
|
101 Tp = Tj + Tm;
|
Chris@10
|
102 Tv = FNMS(KP618033988, Tu, Tt);
|
Chris@10
|
103 TX = FMA(KP618033988, Tt, Tu);
|
Chris@10
|
104 Tq = FMA(KP809016994, Tp, To);
|
Chris@10
|
105 TU = FMA(KP447213595, Tp, Tn);
|
Chris@10
|
106 Ty = R1[WS(rs, 1)];
|
Chris@10
|
107 TF = R1[WS(rs, 3)];
|
Chris@10
|
108 Tr = FNMS(KP552786404, Tq, Tn);
|
Chris@10
|
109 TV = FNMS(KP690983005, TU, To);
|
Chris@10
|
110 Tz = R1[WS(rs, 5)];
|
Chris@10
|
111 TA = R1[WS(rs, 9)];
|
Chris@10
|
112 TI = TF + Ty;
|
Chris@10
|
113 }
|
Chris@10
|
114 }
|
Chris@10
|
115 }
|
Chris@10
|
116 {
|
Chris@10
|
117 E T1w, TJ, TB, T1a;
|
Chris@10
|
118 T1w = T1f + T1d - T1e;
|
Chris@10
|
119 TJ = Tz - TA;
|
Chris@10
|
120 TB = Tz + TA;
|
Chris@10
|
121 T1a = Ti + To - Tp;
|
Chris@10
|
122 {
|
Chris@10
|
123 E T9, T12, TT, T15, TG, TD, T1s, T1u, TW, T11, T10, T1h;
|
Chris@10
|
124 {
|
Chris@10
|
125 E TE, TC, TR, T1b;
|
Chris@10
|
126 T9 = FNMS(KP559016994, T8, T7);
|
Chris@10
|
127 TR = FMA(KP559016994, T8, T7);
|
Chris@10
|
128 TK = FMA(KP618033988, TJ, TI);
|
Chris@10
|
129 T12 = FNMS(KP618033988, TI, TJ);
|
Chris@10
|
130 TE = Ty - TB;
|
Chris@10
|
131 TC = Ty + TB;
|
Chris@10
|
132 TT = FMA(KP951056516, TS, TR);
|
Chris@10
|
133 T15 = FNMS(KP951056516, TS, TR);
|
Chris@10
|
134 TG = FNMS(KP552786404, TF, TE);
|
Chris@10
|
135 T1b = TC - TF - Tx;
|
Chris@10
|
136 {
|
Chris@10
|
137 E TZ, T1q, T1c, T1x;
|
Chris@10
|
138 TZ = FMA(KP447213595, TC, TE);
|
Chris@10
|
139 TD = FMA(KP250000000, TC, Tx);
|
Chris@10
|
140 T1q = FNMS(KP809016994, T1p, T1d);
|
Chris@10
|
141 T1c = T1a + T1b;
|
Chris@10
|
142 T1x = T1a - T1b;
|
Chris@10
|
143 T10 = FNMS(KP690983005, TZ, TF);
|
Chris@10
|
144 T1s = FNMS(KP951056516, T1r, T1q);
|
Chris@10
|
145 T1u = FMA(KP951056516, T1r, T1q);
|
Chris@10
|
146 Ci[WS(csi, 7)] = FMA(KP707106781, T1x, T1w);
|
Chris@10
|
147 Ci[WS(csi, 2)] = FMS(KP707106781, T1x, T1w);
|
Chris@10
|
148 Cr[WS(csr, 7)] = FMA(KP707106781, T1c, T19);
|
Chris@10
|
149 Cr[WS(csr, 2)] = FNMS(KP707106781, T1c, T19);
|
Chris@10
|
150 }
|
Chris@10
|
151 }
|
Chris@10
|
152 TW = FNMS(KP809016994, TV, Ti);
|
Chris@10
|
153 T11 = FNMS(KP809016994, T10, Tx);
|
Chris@10
|
154 T1h = FMA(KP809016994, T1g, T1d);
|
Chris@10
|
155 {
|
Chris@10
|
156 E T17, TY, T16, T13;
|
Chris@10
|
157 T17 = FNMS(KP951056516, TX, TW);
|
Chris@10
|
158 TY = FMA(KP951056516, TX, TW);
|
Chris@10
|
159 T16 = FMA(KP951056516, T12, T11);
|
Chris@10
|
160 T13 = FNMS(KP951056516, T12, T11);
|
Chris@10
|
161 TN = FMA(KP951056516, Tg, T9);
|
Chris@10
|
162 Th = FNMS(KP951056516, Tg, T9);
|
Chris@10
|
163 {
|
Chris@10
|
164 E T18, T1v, T1t, T14;
|
Chris@10
|
165 T18 = T16 - T17;
|
Chris@10
|
166 T1v = T17 + T16;
|
Chris@10
|
167 T1t = TY + T13;
|
Chris@10
|
168 T14 = TY - T13;
|
Chris@10
|
169 Cr[WS(csr, 1)] = FMA(KP707106781, T18, T15);
|
Chris@10
|
170 Cr[WS(csr, 8)] = FNMS(KP707106781, T18, T15);
|
Chris@10
|
171 Ci[WS(csi, 3)] = FMA(KP707106781, T1v, T1u);
|
Chris@10
|
172 Ci[WS(csi, 6)] = FMS(KP707106781, T1v, T1u);
|
Chris@10
|
173 Ci[WS(csi, 1)] = FNMS(KP707106781, T1t, T1s);
|
Chris@10
|
174 Ci[WS(csi, 8)] = -(FMA(KP707106781, T1t, T1s));
|
Chris@10
|
175 Cr[WS(csr, 3)] = FMA(KP707106781, T14, TT);
|
Chris@10
|
176 Cr[WS(csr, 6)] = FNMS(KP707106781, T14, TT);
|
Chris@10
|
177 T1l = FMA(KP951056516, T1k, T1h);
|
Chris@10
|
178 T1n = FNMS(KP951056516, T1k, T1h);
|
Chris@10
|
179 }
|
Chris@10
|
180 }
|
Chris@10
|
181 Ts = FNMS(KP559016994, Tr, Ti);
|
Chris@10
|
182 TH = FNMS(KP559016994, TG, TD);
|
Chris@10
|
183 }
|
Chris@10
|
184 }
|
Chris@10
|
185 }
|
Chris@10
|
186 {
|
Chris@10
|
187 E TO, Tw, TP, TL;
|
Chris@10
|
188 TO = FMA(KP951056516, Tv, Ts);
|
Chris@10
|
189 Tw = FNMS(KP951056516, Tv, Ts);
|
Chris@10
|
190 TP = FMA(KP951056516, TK, TH);
|
Chris@10
|
191 TL = FNMS(KP951056516, TK, TH);
|
Chris@10
|
192 {
|
Chris@10
|
193 E TQ, T1m, T1o, TM;
|
Chris@10
|
194 TQ = TO - TP;
|
Chris@10
|
195 T1m = TO + TP;
|
Chris@10
|
196 T1o = Tw + TL;
|
Chris@10
|
197 TM = Tw - TL;
|
Chris@10
|
198 Cr[WS(csr, 4)] = FMA(KP707106781, TQ, TN);
|
Chris@10
|
199 Cr[WS(csr, 5)] = FNMS(KP707106781, TQ, TN);
|
Chris@10
|
200 Ci[WS(csi, 9)] = FNMS(KP707106781, T1m, T1l);
|
Chris@10
|
201 Ci[0] = -(FMA(KP707106781, T1m, T1l));
|
Chris@10
|
202 Ci[WS(csi, 5)] = FNMS(KP707106781, T1o, T1n);
|
Chris@10
|
203 Ci[WS(csi, 4)] = -(FMA(KP707106781, T1o, T1n));
|
Chris@10
|
204 Cr[0] = FMA(KP707106781, TM, Th);
|
Chris@10
|
205 Cr[WS(csr, 9)] = FNMS(KP707106781, TM, Th);
|
Chris@10
|
206 }
|
Chris@10
|
207 }
|
Chris@10
|
208 }
|
Chris@10
|
209 }
|
Chris@10
|
210 }
|
Chris@10
|
211
|
Chris@10
|
212 static const kr2c_desc desc = { 20, "r2cfII_20", {39, 0, 63, 0}, &GENUS };
|
Chris@10
|
213
|
Chris@10
|
214 void X(codelet_r2cfII_20) (planner *p) {
|
Chris@10
|
215 X(kr2c_register) (p, r2cfII_20, &desc);
|
Chris@10
|
216 }
|
Chris@10
|
217
|
Chris@10
|
218 #else /* HAVE_FMA */
|
Chris@10
|
219
|
Chris@10
|
220 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include r2cfII.h */
|
Chris@10
|
221
|
Chris@10
|
222 /*
|
Chris@10
|
223 * This function contains 102 FP additions, 34 FP multiplications,
|
Chris@10
|
224 * (or, 86 additions, 18 multiplications, 16 fused multiply/add),
|
Chris@10
|
225 * 60 stack variables, 13 constants, and 40 memory accesses
|
Chris@10
|
226 */
|
Chris@10
|
227 #include "r2cfII.h"
|
Chris@10
|
228
|
Chris@10
|
229 static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
230 {
|
Chris@10
|
231 DK(KP572061402, +0.572061402817684297600072783580302076536153377);
|
Chris@10
|
232 DK(KP218508012, +0.218508012224410535399650602527877556893735408);
|
Chris@10
|
233 DK(KP309016994, +0.309016994374947424102293417182819058860154590);
|
Chris@10
|
234 DK(KP809016994, +0.809016994374947424102293417182819058860154590);
|
Chris@10
|
235 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
236 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
237 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
238 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
239 DK(KP176776695, +0.176776695296636881100211090526212259821208984);
|
Chris@10
|
240 DK(KP395284707, +0.395284707521047416499861693054089816714944392);
|
Chris@10
|
241 DK(KP672498511, +0.672498511963957326960058968885748755876783111);
|
Chris@10
|
242 DK(KP415626937, +0.415626937777453428589967464113135184222253485);
|
Chris@10
|
243 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
244 {
|
Chris@10
|
245 INT i;
|
Chris@10
|
246 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
|
Chris@10
|
247 E T8, TD, Tm, TN, T9, TC, TY, TE, Te, TF, Tl, TK, T12, TL, Tk;
|
Chris@10
|
248 E TM, T1, T6, Tq, T1l, T1c, Tp, T1f, T1e, T1d, Ty, TW, T1g, T1m, Tx;
|
Chris@10
|
249 E Tu;
|
Chris@10
|
250 T8 = R1[WS(rs, 2)];
|
Chris@10
|
251 TD = KP707106781 * T8;
|
Chris@10
|
252 Tm = R1[WS(rs, 7)];
|
Chris@10
|
253 TN = KP707106781 * Tm;
|
Chris@10
|
254 {
|
Chris@10
|
255 E Ta, TA, Td, TB, Tb, Tc;
|
Chris@10
|
256 T9 = R1[WS(rs, 6)];
|
Chris@10
|
257 Ta = R1[WS(rs, 8)];
|
Chris@10
|
258 TA = T9 + Ta;
|
Chris@10
|
259 Tb = R1[0];
|
Chris@10
|
260 Tc = R1[WS(rs, 4)];
|
Chris@10
|
261 Td = Tb + Tc;
|
Chris@10
|
262 TB = Tb - Tc;
|
Chris@10
|
263 TC = FMA(KP415626937, TA, KP672498511 * TB);
|
Chris@10
|
264 TY = FNMS(KP415626937, TB, KP672498511 * TA);
|
Chris@10
|
265 TE = KP395284707 * (Ta - Td);
|
Chris@10
|
266 Te = Ta + Td;
|
Chris@10
|
267 TF = KP176776695 * Te;
|
Chris@10
|
268 }
|
Chris@10
|
269 {
|
Chris@10
|
270 E Tg, TJ, Tj, TI, Th, Ti;
|
Chris@10
|
271 Tg = R1[WS(rs, 1)];
|
Chris@10
|
272 Tl = R1[WS(rs, 3)];
|
Chris@10
|
273 TJ = Tg + Tl;
|
Chris@10
|
274 Th = R1[WS(rs, 5)];
|
Chris@10
|
275 Ti = R1[WS(rs, 9)];
|
Chris@10
|
276 Tj = Th + Ti;
|
Chris@10
|
277 TI = Th - Ti;
|
Chris@10
|
278 TK = FNMS(KP415626937, TJ, KP672498511 * TI);
|
Chris@10
|
279 T12 = FMA(KP415626937, TI, KP672498511 * TJ);
|
Chris@10
|
280 TL = KP395284707 * (Tg - Tj);
|
Chris@10
|
281 Tk = Tg + Tj;
|
Chris@10
|
282 TM = KP176776695 * Tk;
|
Chris@10
|
283 }
|
Chris@10
|
284 {
|
Chris@10
|
285 E T2, T5, T3, T4, T1a, T1b;
|
Chris@10
|
286 T1 = R0[0];
|
Chris@10
|
287 T2 = R0[WS(rs, 6)];
|
Chris@10
|
288 T5 = R0[WS(rs, 8)];
|
Chris@10
|
289 T3 = R0[WS(rs, 2)];
|
Chris@10
|
290 T4 = R0[WS(rs, 4)];
|
Chris@10
|
291 T1a = T4 + T2;
|
Chris@10
|
292 T1b = T5 + T3;
|
Chris@10
|
293 T6 = T2 + T3 - (T4 + T5);
|
Chris@10
|
294 Tq = FMA(KP250000000, T6, T1);
|
Chris@10
|
295 T1l = FNMS(KP951056516, T1b, KP587785252 * T1a);
|
Chris@10
|
296 T1c = FMA(KP951056516, T1a, KP587785252 * T1b);
|
Chris@10
|
297 Tp = KP559016994 * (T5 + T2 - (T4 + T3));
|
Chris@10
|
298 }
|
Chris@10
|
299 T1f = R0[WS(rs, 5)];
|
Chris@10
|
300 {
|
Chris@10
|
301 E Tv, Tw, Ts, Tt;
|
Chris@10
|
302 Tv = R0[WS(rs, 9)];
|
Chris@10
|
303 Tw = R0[WS(rs, 1)];
|
Chris@10
|
304 Tx = Tv - Tw;
|
Chris@10
|
305 T1e = Tv + Tw;
|
Chris@10
|
306 Ts = R0[WS(rs, 3)];
|
Chris@10
|
307 Tt = R0[WS(rs, 7)];
|
Chris@10
|
308 Tu = Ts - Tt;
|
Chris@10
|
309 T1d = Ts + Tt;
|
Chris@10
|
310 }
|
Chris@10
|
311 Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
|
Chris@10
|
312 TW = FNMS(KP951056516, Tx, KP587785252 * Tu);
|
Chris@10
|
313 T1g = FMA(KP809016994, T1d, KP309016994 * T1e) + T1f;
|
Chris@10
|
314 T1m = FNMS(KP809016994, T1e, T1f) - (KP309016994 * T1d);
|
Chris@10
|
315 {
|
Chris@10
|
316 E T7, T1r, To, T1q, Tf, Tn;
|
Chris@10
|
317 T7 = T1 - T6;
|
Chris@10
|
318 T1r = T1e + T1f - T1d;
|
Chris@10
|
319 Tf = T8 + (T9 - Te);
|
Chris@10
|
320 Tn = (Tk - Tl) - Tm;
|
Chris@10
|
321 To = KP707106781 * (Tf + Tn);
|
Chris@10
|
322 T1q = KP707106781 * (Tf - Tn);
|
Chris@10
|
323 Cr[WS(csr, 2)] = T7 - To;
|
Chris@10
|
324 Ci[WS(csi, 2)] = T1q - T1r;
|
Chris@10
|
325 Cr[WS(csr, 7)] = T7 + To;
|
Chris@10
|
326 Ci[WS(csi, 7)] = T1q + T1r;
|
Chris@10
|
327 }
|
Chris@10
|
328 {
|
Chris@10
|
329 E T1h, T1j, TX, T15, T10, T16, T13, T17, TV, TZ, T11;
|
Chris@10
|
330 T1h = T1c - T1g;
|
Chris@10
|
331 T1j = T1c + T1g;
|
Chris@10
|
332 TV = Tq - Tp;
|
Chris@10
|
333 TX = TV - TW;
|
Chris@10
|
334 T15 = TV + TW;
|
Chris@10
|
335 TZ = FMA(KP218508012, T9, TD) + TF - TE;
|
Chris@10
|
336 T10 = TY + TZ;
|
Chris@10
|
337 T16 = TZ - TY;
|
Chris@10
|
338 T11 = FNMS(KP218508012, Tl, TL) - (TM + TN);
|
Chris@10
|
339 T13 = T11 - T12;
|
Chris@10
|
340 T17 = T11 + T12;
|
Chris@10
|
341 {
|
Chris@10
|
342 E T14, T19, T18, T1i;
|
Chris@10
|
343 T14 = T10 + T13;
|
Chris@10
|
344 Cr[WS(csr, 5)] = TX - T14;
|
Chris@10
|
345 Cr[WS(csr, 4)] = TX + T14;
|
Chris@10
|
346 T19 = T17 - T16;
|
Chris@10
|
347 Ci[WS(csi, 5)] = T19 - T1h;
|
Chris@10
|
348 Ci[WS(csi, 4)] = T19 + T1h;
|
Chris@10
|
349 T18 = T16 + T17;
|
Chris@10
|
350 Cr[WS(csr, 9)] = T15 - T18;
|
Chris@10
|
351 Cr[0] = T15 + T18;
|
Chris@10
|
352 T1i = T13 - T10;
|
Chris@10
|
353 Ci[0] = T1i - T1j;
|
Chris@10
|
354 Ci[WS(csi, 9)] = T1i + T1j;
|
Chris@10
|
355 }
|
Chris@10
|
356 }
|
Chris@10
|
357 {
|
Chris@10
|
358 E T1n, T1p, Tz, TR, TH, TS, TP, TT, Tr, TG, TO;
|
Chris@10
|
359 T1n = T1l + T1m;
|
Chris@10
|
360 T1p = T1m - T1l;
|
Chris@10
|
361 Tr = Tp + Tq;
|
Chris@10
|
362 Tz = Tr + Ty;
|
Chris@10
|
363 TR = Tr - Ty;
|
Chris@10
|
364 TG = TD + TE + FNMS(KP572061402, T9, TF);
|
Chris@10
|
365 TH = TC + TG;
|
Chris@10
|
366 TS = TC - TG;
|
Chris@10
|
367 TO = TL + TM + FNMS(KP572061402, Tl, TN);
|
Chris@10
|
368 TP = TK - TO;
|
Chris@10
|
369 TT = TK + TO;
|
Chris@10
|
370 {
|
Chris@10
|
371 E TQ, T1o, TU, T1k;
|
Chris@10
|
372 TQ = TH + TP;
|
Chris@10
|
373 Cr[WS(csr, 6)] = Tz - TQ;
|
Chris@10
|
374 Cr[WS(csr, 3)] = Tz + TQ;
|
Chris@10
|
375 T1o = TT - TS;
|
Chris@10
|
376 Ci[WS(csi, 6)] = T1o - T1p;
|
Chris@10
|
377 Ci[WS(csi, 3)] = T1o + T1p;
|
Chris@10
|
378 TU = TS + TT;
|
Chris@10
|
379 Cr[WS(csr, 8)] = TR - TU;
|
Chris@10
|
380 Cr[WS(csr, 1)] = TR + TU;
|
Chris@10
|
381 T1k = TP - TH;
|
Chris@10
|
382 Ci[WS(csi, 8)] = T1k - T1n;
|
Chris@10
|
383 Ci[WS(csi, 1)] = T1k + T1n;
|
Chris@10
|
384 }
|
Chris@10
|
385 }
|
Chris@10
|
386 }
|
Chris@10
|
387 }
|
Chris@10
|
388 }
|
Chris@10
|
389
|
Chris@10
|
390 static const kr2c_desc desc = { 20, "r2cfII_20", {86, 18, 16, 0}, &GENUS };
|
Chris@10
|
391
|
Chris@10
|
392 void X(codelet_r2cfII_20) (planner *p) {
|
Chris@10
|
393 X(kr2c_register) (p, r2cfII_20, &desc);
|
Chris@10
|
394 }
|
Chris@10
|
395
|
Chris@10
|
396 #endif /* HAVE_FMA */
|