annotate src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_20.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:23 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include r2cfII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 102 FP additions, 63 FP multiplications,
Chris@10 32 * (or, 39 additions, 0 multiplications, 63 fused multiply/add),
Chris@10 33 * 67 stack variables, 10 constants, and 40 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cfII.h"
Chris@10 36
Chris@10 37 static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 42 DK(KP690983005, +0.690983005625052575897706582817180941139845410);
Chris@10 43 DK(KP552786404, +0.552786404500042060718165266253744752911876328);
Chris@10 44 DK(KP447213595, +0.447213595499957939281834733746255247088123672);
Chris@10 45 DK(KP809016994, +0.809016994374947424102293417182819058860154590);
Chris@10 46 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 47 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 48 DK(KP381966011, +0.381966011250105151795413165634361882279690820);
Chris@10 49 {
Chris@10 50 INT i;
Chris@10 51 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
Chris@10 52 E Tv, TK, TN, Th, T1l, T1n, Ts, TH;
Chris@10 53 {
Chris@10 54 E Ti, T1d, T1f, T1e, T1g, T1p, TS, Tg, To, T8, T7, T19, T1r, T1k, Tx;
Chris@10 55 E Tp, TX, Ty, TF, Tr, TV, Tz, TA, TI;
Chris@10 56 {
Chris@10 57 E Ta, Tb, Td, Te;
Chris@10 58 Ti = R1[WS(rs, 2)];
Chris@10 59 T1d = R0[WS(rs, 5)];
Chris@10 60 Ta = R0[WS(rs, 9)];
Chris@10 61 Tb = R0[WS(rs, 1)];
Chris@10 62 Td = R0[WS(rs, 3)];
Chris@10 63 Te = R0[WS(rs, 7)];
Chris@10 64 {
Chris@10 65 E T1, T2, T5, T3, T4, T1i, Tc, Tf;
Chris@10 66 T1 = R0[0];
Chris@10 67 T1f = Ta + Tb;
Chris@10 68 Tc = Ta - Tb;
Chris@10 69 T1e = Td + Te;
Chris@10 70 Tf = Td - Te;
Chris@10 71 T2 = R0[WS(rs, 4)];
Chris@10 72 T5 = R0[WS(rs, 6)];
Chris@10 73 T1g = FMA(KP381966011, T1f, T1e);
Chris@10 74 T1p = FMA(KP381966011, T1e, T1f);
Chris@10 75 TS = FMA(KP618033988, Tc, Tf);
Chris@10 76 Tg = FNMS(KP618033988, Tf, Tc);
Chris@10 77 T3 = R0[WS(rs, 8)];
Chris@10 78 T4 = R0[WS(rs, 2)];
Chris@10 79 T1i = T2 + T5;
Chris@10 80 {
Chris@10 81 E Tj, Tu, Tm, Tt, Tn, Tq, TU;
Chris@10 82 Tj = R1[WS(rs, 8)];
Chris@10 83 To = R1[WS(rs, 6)];
Chris@10 84 {
Chris@10 85 E T6, T1j, Tk, Tl;
Chris@10 86 T6 = T2 + T3 - T4 - T5;
Chris@10 87 T8 = (T3 + T5 - T2) - T4;
Chris@10 88 T1j = T3 + T4;
Chris@10 89 Tk = R1[0];
Chris@10 90 Tl = R1[WS(rs, 4)];
Chris@10 91 T7 = FNMS(KP250000000, T6, T1);
Chris@10 92 T19 = T1 + T6;
Chris@10 93 T1r = FNMS(KP618033988, T1i, T1j);
Chris@10 94 T1k = FMA(KP618033988, T1j, T1i);
Chris@10 95 Tu = Tk - Tl;
Chris@10 96 Tm = Tk + Tl;
Chris@10 97 }
Chris@10 98 Tt = To + Tj;
Chris@10 99 Tx = R1[WS(rs, 7)];
Chris@10 100 Tn = Tj - Tm;
Chris@10 101 Tp = Tj + Tm;
Chris@10 102 Tv = FNMS(KP618033988, Tu, Tt);
Chris@10 103 TX = FMA(KP618033988, Tt, Tu);
Chris@10 104 Tq = FMA(KP809016994, Tp, To);
Chris@10 105 TU = FMA(KP447213595, Tp, Tn);
Chris@10 106 Ty = R1[WS(rs, 1)];
Chris@10 107 TF = R1[WS(rs, 3)];
Chris@10 108 Tr = FNMS(KP552786404, Tq, Tn);
Chris@10 109 TV = FNMS(KP690983005, TU, To);
Chris@10 110 Tz = R1[WS(rs, 5)];
Chris@10 111 TA = R1[WS(rs, 9)];
Chris@10 112 TI = TF + Ty;
Chris@10 113 }
Chris@10 114 }
Chris@10 115 }
Chris@10 116 {
Chris@10 117 E T1w, TJ, TB, T1a;
Chris@10 118 T1w = T1f + T1d - T1e;
Chris@10 119 TJ = Tz - TA;
Chris@10 120 TB = Tz + TA;
Chris@10 121 T1a = Ti + To - Tp;
Chris@10 122 {
Chris@10 123 E T9, T12, TT, T15, TG, TD, T1s, T1u, TW, T11, T10, T1h;
Chris@10 124 {
Chris@10 125 E TE, TC, TR, T1b;
Chris@10 126 T9 = FNMS(KP559016994, T8, T7);
Chris@10 127 TR = FMA(KP559016994, T8, T7);
Chris@10 128 TK = FMA(KP618033988, TJ, TI);
Chris@10 129 T12 = FNMS(KP618033988, TI, TJ);
Chris@10 130 TE = Ty - TB;
Chris@10 131 TC = Ty + TB;
Chris@10 132 TT = FMA(KP951056516, TS, TR);
Chris@10 133 T15 = FNMS(KP951056516, TS, TR);
Chris@10 134 TG = FNMS(KP552786404, TF, TE);
Chris@10 135 T1b = TC - TF - Tx;
Chris@10 136 {
Chris@10 137 E TZ, T1q, T1c, T1x;
Chris@10 138 TZ = FMA(KP447213595, TC, TE);
Chris@10 139 TD = FMA(KP250000000, TC, Tx);
Chris@10 140 T1q = FNMS(KP809016994, T1p, T1d);
Chris@10 141 T1c = T1a + T1b;
Chris@10 142 T1x = T1a - T1b;
Chris@10 143 T10 = FNMS(KP690983005, TZ, TF);
Chris@10 144 T1s = FNMS(KP951056516, T1r, T1q);
Chris@10 145 T1u = FMA(KP951056516, T1r, T1q);
Chris@10 146 Ci[WS(csi, 7)] = FMA(KP707106781, T1x, T1w);
Chris@10 147 Ci[WS(csi, 2)] = FMS(KP707106781, T1x, T1w);
Chris@10 148 Cr[WS(csr, 7)] = FMA(KP707106781, T1c, T19);
Chris@10 149 Cr[WS(csr, 2)] = FNMS(KP707106781, T1c, T19);
Chris@10 150 }
Chris@10 151 }
Chris@10 152 TW = FNMS(KP809016994, TV, Ti);
Chris@10 153 T11 = FNMS(KP809016994, T10, Tx);
Chris@10 154 T1h = FMA(KP809016994, T1g, T1d);
Chris@10 155 {
Chris@10 156 E T17, TY, T16, T13;
Chris@10 157 T17 = FNMS(KP951056516, TX, TW);
Chris@10 158 TY = FMA(KP951056516, TX, TW);
Chris@10 159 T16 = FMA(KP951056516, T12, T11);
Chris@10 160 T13 = FNMS(KP951056516, T12, T11);
Chris@10 161 TN = FMA(KP951056516, Tg, T9);
Chris@10 162 Th = FNMS(KP951056516, Tg, T9);
Chris@10 163 {
Chris@10 164 E T18, T1v, T1t, T14;
Chris@10 165 T18 = T16 - T17;
Chris@10 166 T1v = T17 + T16;
Chris@10 167 T1t = TY + T13;
Chris@10 168 T14 = TY - T13;
Chris@10 169 Cr[WS(csr, 1)] = FMA(KP707106781, T18, T15);
Chris@10 170 Cr[WS(csr, 8)] = FNMS(KP707106781, T18, T15);
Chris@10 171 Ci[WS(csi, 3)] = FMA(KP707106781, T1v, T1u);
Chris@10 172 Ci[WS(csi, 6)] = FMS(KP707106781, T1v, T1u);
Chris@10 173 Ci[WS(csi, 1)] = FNMS(KP707106781, T1t, T1s);
Chris@10 174 Ci[WS(csi, 8)] = -(FMA(KP707106781, T1t, T1s));
Chris@10 175 Cr[WS(csr, 3)] = FMA(KP707106781, T14, TT);
Chris@10 176 Cr[WS(csr, 6)] = FNMS(KP707106781, T14, TT);
Chris@10 177 T1l = FMA(KP951056516, T1k, T1h);
Chris@10 178 T1n = FNMS(KP951056516, T1k, T1h);
Chris@10 179 }
Chris@10 180 }
Chris@10 181 Ts = FNMS(KP559016994, Tr, Ti);
Chris@10 182 TH = FNMS(KP559016994, TG, TD);
Chris@10 183 }
Chris@10 184 }
Chris@10 185 }
Chris@10 186 {
Chris@10 187 E TO, Tw, TP, TL;
Chris@10 188 TO = FMA(KP951056516, Tv, Ts);
Chris@10 189 Tw = FNMS(KP951056516, Tv, Ts);
Chris@10 190 TP = FMA(KP951056516, TK, TH);
Chris@10 191 TL = FNMS(KP951056516, TK, TH);
Chris@10 192 {
Chris@10 193 E TQ, T1m, T1o, TM;
Chris@10 194 TQ = TO - TP;
Chris@10 195 T1m = TO + TP;
Chris@10 196 T1o = Tw + TL;
Chris@10 197 TM = Tw - TL;
Chris@10 198 Cr[WS(csr, 4)] = FMA(KP707106781, TQ, TN);
Chris@10 199 Cr[WS(csr, 5)] = FNMS(KP707106781, TQ, TN);
Chris@10 200 Ci[WS(csi, 9)] = FNMS(KP707106781, T1m, T1l);
Chris@10 201 Ci[0] = -(FMA(KP707106781, T1m, T1l));
Chris@10 202 Ci[WS(csi, 5)] = FNMS(KP707106781, T1o, T1n);
Chris@10 203 Ci[WS(csi, 4)] = -(FMA(KP707106781, T1o, T1n));
Chris@10 204 Cr[0] = FMA(KP707106781, TM, Th);
Chris@10 205 Cr[WS(csr, 9)] = FNMS(KP707106781, TM, Th);
Chris@10 206 }
Chris@10 207 }
Chris@10 208 }
Chris@10 209 }
Chris@10 210 }
Chris@10 211
Chris@10 212 static const kr2c_desc desc = { 20, "r2cfII_20", {39, 0, 63, 0}, &GENUS };
Chris@10 213
Chris@10 214 void X(codelet_r2cfII_20) (planner *p) {
Chris@10 215 X(kr2c_register) (p, r2cfII_20, &desc);
Chris@10 216 }
Chris@10 217
Chris@10 218 #else /* HAVE_FMA */
Chris@10 219
Chris@10 220 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include r2cfII.h */
Chris@10 221
Chris@10 222 /*
Chris@10 223 * This function contains 102 FP additions, 34 FP multiplications,
Chris@10 224 * (or, 86 additions, 18 multiplications, 16 fused multiply/add),
Chris@10 225 * 60 stack variables, 13 constants, and 40 memory accesses
Chris@10 226 */
Chris@10 227 #include "r2cfII.h"
Chris@10 228
Chris@10 229 static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 230 {
Chris@10 231 DK(KP572061402, +0.572061402817684297600072783580302076536153377);
Chris@10 232 DK(KP218508012, +0.218508012224410535399650602527877556893735408);
Chris@10 233 DK(KP309016994, +0.309016994374947424102293417182819058860154590);
Chris@10 234 DK(KP809016994, +0.809016994374947424102293417182819058860154590);
Chris@10 235 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 236 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 237 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 238 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 239 DK(KP176776695, +0.176776695296636881100211090526212259821208984);
Chris@10 240 DK(KP395284707, +0.395284707521047416499861693054089816714944392);
Chris@10 241 DK(KP672498511, +0.672498511963957326960058968885748755876783111);
Chris@10 242 DK(KP415626937, +0.415626937777453428589967464113135184222253485);
Chris@10 243 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 244 {
Chris@10 245 INT i;
Chris@10 246 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
Chris@10 247 E T8, TD, Tm, TN, T9, TC, TY, TE, Te, TF, Tl, TK, T12, TL, Tk;
Chris@10 248 E TM, T1, T6, Tq, T1l, T1c, Tp, T1f, T1e, T1d, Ty, TW, T1g, T1m, Tx;
Chris@10 249 E Tu;
Chris@10 250 T8 = R1[WS(rs, 2)];
Chris@10 251 TD = KP707106781 * T8;
Chris@10 252 Tm = R1[WS(rs, 7)];
Chris@10 253 TN = KP707106781 * Tm;
Chris@10 254 {
Chris@10 255 E Ta, TA, Td, TB, Tb, Tc;
Chris@10 256 T9 = R1[WS(rs, 6)];
Chris@10 257 Ta = R1[WS(rs, 8)];
Chris@10 258 TA = T9 + Ta;
Chris@10 259 Tb = R1[0];
Chris@10 260 Tc = R1[WS(rs, 4)];
Chris@10 261 Td = Tb + Tc;
Chris@10 262 TB = Tb - Tc;
Chris@10 263 TC = FMA(KP415626937, TA, KP672498511 * TB);
Chris@10 264 TY = FNMS(KP415626937, TB, KP672498511 * TA);
Chris@10 265 TE = KP395284707 * (Ta - Td);
Chris@10 266 Te = Ta + Td;
Chris@10 267 TF = KP176776695 * Te;
Chris@10 268 }
Chris@10 269 {
Chris@10 270 E Tg, TJ, Tj, TI, Th, Ti;
Chris@10 271 Tg = R1[WS(rs, 1)];
Chris@10 272 Tl = R1[WS(rs, 3)];
Chris@10 273 TJ = Tg + Tl;
Chris@10 274 Th = R1[WS(rs, 5)];
Chris@10 275 Ti = R1[WS(rs, 9)];
Chris@10 276 Tj = Th + Ti;
Chris@10 277 TI = Th - Ti;
Chris@10 278 TK = FNMS(KP415626937, TJ, KP672498511 * TI);
Chris@10 279 T12 = FMA(KP415626937, TI, KP672498511 * TJ);
Chris@10 280 TL = KP395284707 * (Tg - Tj);
Chris@10 281 Tk = Tg + Tj;
Chris@10 282 TM = KP176776695 * Tk;
Chris@10 283 }
Chris@10 284 {
Chris@10 285 E T2, T5, T3, T4, T1a, T1b;
Chris@10 286 T1 = R0[0];
Chris@10 287 T2 = R0[WS(rs, 6)];
Chris@10 288 T5 = R0[WS(rs, 8)];
Chris@10 289 T3 = R0[WS(rs, 2)];
Chris@10 290 T4 = R0[WS(rs, 4)];
Chris@10 291 T1a = T4 + T2;
Chris@10 292 T1b = T5 + T3;
Chris@10 293 T6 = T2 + T3 - (T4 + T5);
Chris@10 294 Tq = FMA(KP250000000, T6, T1);
Chris@10 295 T1l = FNMS(KP951056516, T1b, KP587785252 * T1a);
Chris@10 296 T1c = FMA(KP951056516, T1a, KP587785252 * T1b);
Chris@10 297 Tp = KP559016994 * (T5 + T2 - (T4 + T3));
Chris@10 298 }
Chris@10 299 T1f = R0[WS(rs, 5)];
Chris@10 300 {
Chris@10 301 E Tv, Tw, Ts, Tt;
Chris@10 302 Tv = R0[WS(rs, 9)];
Chris@10 303 Tw = R0[WS(rs, 1)];
Chris@10 304 Tx = Tv - Tw;
Chris@10 305 T1e = Tv + Tw;
Chris@10 306 Ts = R0[WS(rs, 3)];
Chris@10 307 Tt = R0[WS(rs, 7)];
Chris@10 308 Tu = Ts - Tt;
Chris@10 309 T1d = Ts + Tt;
Chris@10 310 }
Chris@10 311 Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
Chris@10 312 TW = FNMS(KP951056516, Tx, KP587785252 * Tu);
Chris@10 313 T1g = FMA(KP809016994, T1d, KP309016994 * T1e) + T1f;
Chris@10 314 T1m = FNMS(KP809016994, T1e, T1f) - (KP309016994 * T1d);
Chris@10 315 {
Chris@10 316 E T7, T1r, To, T1q, Tf, Tn;
Chris@10 317 T7 = T1 - T6;
Chris@10 318 T1r = T1e + T1f - T1d;
Chris@10 319 Tf = T8 + (T9 - Te);
Chris@10 320 Tn = (Tk - Tl) - Tm;
Chris@10 321 To = KP707106781 * (Tf + Tn);
Chris@10 322 T1q = KP707106781 * (Tf - Tn);
Chris@10 323 Cr[WS(csr, 2)] = T7 - To;
Chris@10 324 Ci[WS(csi, 2)] = T1q - T1r;
Chris@10 325 Cr[WS(csr, 7)] = T7 + To;
Chris@10 326 Ci[WS(csi, 7)] = T1q + T1r;
Chris@10 327 }
Chris@10 328 {
Chris@10 329 E T1h, T1j, TX, T15, T10, T16, T13, T17, TV, TZ, T11;
Chris@10 330 T1h = T1c - T1g;
Chris@10 331 T1j = T1c + T1g;
Chris@10 332 TV = Tq - Tp;
Chris@10 333 TX = TV - TW;
Chris@10 334 T15 = TV + TW;
Chris@10 335 TZ = FMA(KP218508012, T9, TD) + TF - TE;
Chris@10 336 T10 = TY + TZ;
Chris@10 337 T16 = TZ - TY;
Chris@10 338 T11 = FNMS(KP218508012, Tl, TL) - (TM + TN);
Chris@10 339 T13 = T11 - T12;
Chris@10 340 T17 = T11 + T12;
Chris@10 341 {
Chris@10 342 E T14, T19, T18, T1i;
Chris@10 343 T14 = T10 + T13;
Chris@10 344 Cr[WS(csr, 5)] = TX - T14;
Chris@10 345 Cr[WS(csr, 4)] = TX + T14;
Chris@10 346 T19 = T17 - T16;
Chris@10 347 Ci[WS(csi, 5)] = T19 - T1h;
Chris@10 348 Ci[WS(csi, 4)] = T19 + T1h;
Chris@10 349 T18 = T16 + T17;
Chris@10 350 Cr[WS(csr, 9)] = T15 - T18;
Chris@10 351 Cr[0] = T15 + T18;
Chris@10 352 T1i = T13 - T10;
Chris@10 353 Ci[0] = T1i - T1j;
Chris@10 354 Ci[WS(csi, 9)] = T1i + T1j;
Chris@10 355 }
Chris@10 356 }
Chris@10 357 {
Chris@10 358 E T1n, T1p, Tz, TR, TH, TS, TP, TT, Tr, TG, TO;
Chris@10 359 T1n = T1l + T1m;
Chris@10 360 T1p = T1m - T1l;
Chris@10 361 Tr = Tp + Tq;
Chris@10 362 Tz = Tr + Ty;
Chris@10 363 TR = Tr - Ty;
Chris@10 364 TG = TD + TE + FNMS(KP572061402, T9, TF);
Chris@10 365 TH = TC + TG;
Chris@10 366 TS = TC - TG;
Chris@10 367 TO = TL + TM + FNMS(KP572061402, Tl, TN);
Chris@10 368 TP = TK - TO;
Chris@10 369 TT = TK + TO;
Chris@10 370 {
Chris@10 371 E TQ, T1o, TU, T1k;
Chris@10 372 TQ = TH + TP;
Chris@10 373 Cr[WS(csr, 6)] = Tz - TQ;
Chris@10 374 Cr[WS(csr, 3)] = Tz + TQ;
Chris@10 375 T1o = TT - TS;
Chris@10 376 Ci[WS(csi, 6)] = T1o - T1p;
Chris@10 377 Ci[WS(csi, 3)] = T1o + T1p;
Chris@10 378 TU = TS + TT;
Chris@10 379 Cr[WS(csr, 8)] = TR - TU;
Chris@10 380 Cr[WS(csr, 1)] = TR + TU;
Chris@10 381 T1k = TP - TH;
Chris@10 382 Ci[WS(csi, 8)] = T1k - T1n;
Chris@10 383 Ci[WS(csi, 1)] = T1k + T1n;
Chris@10 384 }
Chris@10 385 }
Chris@10 386 }
Chris@10 387 }
Chris@10 388 }
Chris@10 389
Chris@10 390 static const kr2c_desc desc = { 20, "r2cfII_20", {86, 18, 16, 0}, &GENUS };
Chris@10 391
Chris@10 392 void X(codelet_r2cfII_20) (planner *p) {
Chris@10 393 X(kr2c_register) (p, r2cfII_20, &desc);
Chris@10 394 }
Chris@10 395
Chris@10 396 #endif /* HAVE_FMA */