annotate src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_12.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:15 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include r2cfII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 45 FP additions, 24 FP multiplications,
Chris@10 32 * (or, 21 additions, 0 multiplications, 24 fused multiply/add),
Chris@10 33 * 37 stack variables, 3 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cfII.h"
Chris@10 36
Chris@10 37 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 42 {
Chris@10 43 INT i;
Chris@10 44 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@10 45 E TD, TB, Tp, T9, Tq, Tr, TE, To, Ts, TC;
Chris@10 46 {
Chris@10 47 E T8, T1, Tv, Tm, TF, Tz, Tl, Ta, Tb, Tt, TA, T4, Tc;
Chris@10 48 {
Chris@10 49 E Tx, Th, Ti, Tj, Ty, T6, T7, T2, T3, Tk;
Chris@10 50 Tx = R0[WS(rs, 3)];
Chris@10 51 T6 = R0[WS(rs, 5)];
Chris@10 52 T7 = R0[WS(rs, 1)];
Chris@10 53 Th = R1[WS(rs, 4)];
Chris@10 54 Ti = R1[WS(rs, 2)];
Chris@10 55 Tj = R1[0];
Chris@10 56 Ty = T6 + T7;
Chris@10 57 T8 = T6 - T7;
Chris@10 58 T1 = R0[0];
Chris@10 59 Tv = Ti - Tj - Th;
Chris@10 60 Tk = Ti - Tj;
Chris@10 61 Tm = Ti + Tj;
Chris@10 62 TF = Tx - Ty;
Chris@10 63 Tz = FMA(KP500000000, Ty, Tx);
Chris@10 64 T2 = R0[WS(rs, 2)];
Chris@10 65 T3 = R0[WS(rs, 4)];
Chris@10 66 Tl = FMA(KP500000000, Tk, Th);
Chris@10 67 Ta = R1[WS(rs, 1)];
Chris@10 68 Tb = R1[WS(rs, 3)];
Chris@10 69 Tt = T1 + T3 - T2;
Chris@10 70 TA = T3 + T2;
Chris@10 71 T4 = T2 - T3;
Chris@10 72 Tc = R1[WS(rs, 5)];
Chris@10 73 }
Chris@10 74 {
Chris@10 75 E Tn, Tg, T5, Tu;
Chris@10 76 TD = FNMS(KP866025403, TA, Tz);
Chris@10 77 TB = FMA(KP866025403, TA, Tz);
Chris@10 78 T5 = FMA(KP500000000, T4, T1);
Chris@10 79 Tu = Ta + Tc - Tb;
Chris@10 80 {
Chris@10 81 E Td, Tf, TG, Tw, Te;
Chris@10 82 Td = Tb - Tc;
Chris@10 83 Tf = Tc + Tb;
Chris@10 84 Tp = FMA(KP866025403, T8, T5);
Chris@10 85 T9 = FNMS(KP866025403, T8, T5);
Chris@10 86 TG = Tv - Tu;
Chris@10 87 Tw = Tu + Tv;
Chris@10 88 Te = FMA(KP500000000, Td, Ta);
Chris@10 89 Tq = FMA(KP866025403, Tm, Tl);
Chris@10 90 Tn = FNMS(KP866025403, Tm, Tl);
Chris@10 91 Ci[WS(csi, 1)] = FMA(KP707106781, TG, TF);
Chris@10 92 Ci[WS(csi, 4)] = FMS(KP707106781, TG, TF);
Chris@10 93 Cr[WS(csr, 4)] = FMA(KP707106781, Tw, Tt);
Chris@10 94 Cr[WS(csr, 1)] = FNMS(KP707106781, Tw, Tt);
Chris@10 95 Tg = FNMS(KP866025403, Tf, Te);
Chris@10 96 Tr = FMA(KP866025403, Tf, Te);
Chris@10 97 }
Chris@10 98 TE = Tg + Tn;
Chris@10 99 To = Tg - Tn;
Chris@10 100 }
Chris@10 101 }
Chris@10 102 Ci[WS(csi, 2)] = FMS(KP707106781, TE, TD);
Chris@10 103 Ci[WS(csi, 3)] = FMA(KP707106781, TE, TD);
Chris@10 104 Cr[0] = FMA(KP707106781, To, T9);
Chris@10 105 Cr[WS(csr, 5)] = FNMS(KP707106781, To, T9);
Chris@10 106 Ts = Tq - Tr;
Chris@10 107 TC = Tr + Tq;
Chris@10 108 Ci[0] = -(FMA(KP707106781, TC, TB));
Chris@10 109 Ci[WS(csi, 5)] = FNMS(KP707106781, TC, TB);
Chris@10 110 Cr[WS(csr, 2)] = FMA(KP707106781, Ts, Tp);
Chris@10 111 Cr[WS(csr, 3)] = FNMS(KP707106781, Ts, Tp);
Chris@10 112 }
Chris@10 113 }
Chris@10 114 }
Chris@10 115
Chris@10 116 static const kr2c_desc desc = { 12, "r2cfII_12", {21, 0, 24, 0}, &GENUS };
Chris@10 117
Chris@10 118 void X(codelet_r2cfII_12) (planner *p) {
Chris@10 119 X(kr2c_register) (p, r2cfII_12, &desc);
Chris@10 120 }
Chris@10 121
Chris@10 122 #else /* HAVE_FMA */
Chris@10 123
Chris@10 124 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include r2cfII.h */
Chris@10 125
Chris@10 126 /*
Chris@10 127 * This function contains 43 FP additions, 12 FP multiplications,
Chris@10 128 * (or, 39 additions, 8 multiplications, 4 fused multiply/add),
Chris@10 129 * 28 stack variables, 5 constants, and 24 memory accesses
Chris@10 130 */
Chris@10 131 #include "r2cfII.h"
Chris@10 132
Chris@10 133 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 134 {
Chris@10 135 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@10 136 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 137 DK(KP612372435, +0.612372435695794524549321018676472847991486870);
Chris@10 138 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 139 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 140 {
Chris@10 141 INT i;
Chris@10 142 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@10 143 E Tx, Tg, T4, Tz, Ty, Tj, TA, T9, Tm, Tl, Te, Tp, To, Tf, TE;
Chris@10 144 E TF;
Chris@10 145 {
Chris@10 146 E T1, T3, T2, Th, Ti;
Chris@10 147 T1 = R0[0];
Chris@10 148 T3 = R0[WS(rs, 2)];
Chris@10 149 T2 = R0[WS(rs, 4)];
Chris@10 150 Tx = KP866025403 * (T2 + T3);
Chris@10 151 Tg = FMA(KP500000000, T3 - T2, T1);
Chris@10 152 T4 = T1 + T2 - T3;
Chris@10 153 Tz = R0[WS(rs, 3)];
Chris@10 154 Th = R0[WS(rs, 5)];
Chris@10 155 Ti = R0[WS(rs, 1)];
Chris@10 156 Ty = Th + Ti;
Chris@10 157 Tj = KP866025403 * (Th - Ti);
Chris@10 158 TA = FMA(KP500000000, Ty, Tz);
Chris@10 159 }
Chris@10 160 {
Chris@10 161 E T5, T6, T7, T8;
Chris@10 162 T5 = R1[WS(rs, 1)];
Chris@10 163 T6 = R1[WS(rs, 5)];
Chris@10 164 T7 = R1[WS(rs, 3)];
Chris@10 165 T8 = T6 - T7;
Chris@10 166 T9 = T5 + T8;
Chris@10 167 Tm = KP612372435 * (T6 + T7);
Chris@10 168 Tl = FNMS(KP353553390, T8, KP707106781 * T5);
Chris@10 169 }
Chris@10 170 {
Chris@10 171 E Td, Ta, Tb, Tc;
Chris@10 172 Td = R1[WS(rs, 4)];
Chris@10 173 Ta = R1[WS(rs, 2)];
Chris@10 174 Tb = R1[0];
Chris@10 175 Tc = Ta - Tb;
Chris@10 176 Te = Tc - Td;
Chris@10 177 Tp = FMA(KP353553390, Tc, KP707106781 * Td);
Chris@10 178 To = KP612372435 * (Ta + Tb);
Chris@10 179 }
Chris@10 180 Tf = KP707106781 * (T9 + Te);
Chris@10 181 Cr[WS(csr, 1)] = T4 - Tf;
Chris@10 182 Cr[WS(csr, 4)] = T4 + Tf;
Chris@10 183 TE = KP707106781 * (Te - T9);
Chris@10 184 TF = Tz - Ty;
Chris@10 185 Ci[WS(csi, 4)] = TE - TF;
Chris@10 186 Ci[WS(csi, 1)] = TE + TF;
Chris@10 187 {
Chris@10 188 E Tk, TB, Tr, Tw, Tn, Tq;
Chris@10 189 Tk = Tg - Tj;
Chris@10 190 TB = Tx - TA;
Chris@10 191 Tn = Tl - Tm;
Chris@10 192 Tq = To - Tp;
Chris@10 193 Tr = Tn + Tq;
Chris@10 194 Tw = Tn - Tq;
Chris@10 195 Cr[WS(csr, 5)] = Tk - Tr;
Chris@10 196 Ci[WS(csi, 2)] = Tw + TB;
Chris@10 197 Cr[0] = Tk + Tr;
Chris@10 198 Ci[WS(csi, 3)] = Tw - TB;
Chris@10 199 }
Chris@10 200 {
Chris@10 201 E Ts, TD, Tv, TC, Tt, Tu;
Chris@10 202 Ts = Tg + Tj;
Chris@10 203 TD = Tx + TA;
Chris@10 204 Tt = To + Tp;
Chris@10 205 Tu = Tm + Tl;
Chris@10 206 Tv = Tt - Tu;
Chris@10 207 TC = Tu + Tt;
Chris@10 208 Cr[WS(csr, 3)] = Ts - Tv;
Chris@10 209 Ci[WS(csi, 5)] = TD - TC;
Chris@10 210 Cr[WS(csr, 2)] = Ts + Tv;
Chris@10 211 Ci[0] = -(TC + TD);
Chris@10 212 }
Chris@10 213 }
Chris@10 214 }
Chris@10 215 }
Chris@10 216
Chris@10 217 static const kr2c_desc desc = { 12, "r2cfII_12", {39, 8, 4, 0}, &GENUS };
Chris@10 218
Chris@10 219 void X(codelet_r2cfII_12) (planner *p) {
Chris@10 220 X(kr2c_register) (p, r2cfII_12, &desc);
Chris@10 221 }
Chris@10 222
Chris@10 223 #endif /* HAVE_FMA */