annotate src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:15 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include r2cfII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 32 FP additions, 18 FP multiplications,
Chris@10 32 * (or, 14 additions, 0 multiplications, 18 fused multiply/add),
Chris@10 33 * 37 stack variables, 4 constants, and 20 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cfII.h"
Chris@10 36
Chris@10 37 static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 43 {
Chris@10 44 INT i;
Chris@10 45 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@10 46 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
Chris@10 47 {
Chris@10 48 E T1, To, Ts, Tt, T8, Ta, Te, Tm, Tl, Th, Tn, T9;
Chris@10 49 T1 = R0[0];
Chris@10 50 To = R1[WS(rs, 2)];
Chris@10 51 {
Chris@10 52 E T2, T3, T5, T6;
Chris@10 53 T2 = R0[WS(rs, 2)];
Chris@10 54 T3 = R0[WS(rs, 3)];
Chris@10 55 T5 = R0[WS(rs, 4)];
Chris@10 56 T6 = R0[WS(rs, 1)];
Chris@10 57 {
Chris@10 58 E Tc, T4, T7, Td, Tf, Tg;
Chris@10 59 Tc = R1[0];
Chris@10 60 Ts = T2 + T3;
Chris@10 61 T4 = T2 - T3;
Chris@10 62 Tt = T5 + T6;
Chris@10 63 T7 = T5 - T6;
Chris@10 64 Td = R1[WS(rs, 4)];
Chris@10 65 Tf = R1[WS(rs, 1)];
Chris@10 66 Tg = R1[WS(rs, 3)];
Chris@10 67 T8 = T4 + T7;
Chris@10 68 Ta = T4 - T7;
Chris@10 69 Te = Tc - Td;
Chris@10 70 Tm = Tc + Td;
Chris@10 71 Tl = Tf + Tg;
Chris@10 72 Th = Tf - Tg;
Chris@10 73 }
Chris@10 74 }
Chris@10 75 Cr[WS(csr, 2)] = T1 + T8;
Chris@10 76 Tn = Tl - Tm;
Chris@10 77 Tq = Tm + Tl;
Chris@10 78 Ti = FMA(KP618033988, Th, Te);
Chris@10 79 Tk = FNMS(KP618033988, Te, Th);
Chris@10 80 Ci[WS(csi, 2)] = Tn - To;
Chris@10 81 T9 = FNMS(KP250000000, T8, T1);
Chris@10 82 Tu = FMA(KP618033988, Tt, Ts);
Chris@10 83 Tw = FNMS(KP618033988, Ts, Tt);
Chris@10 84 Tp = FMA(KP250000000, Tn, To);
Chris@10 85 Tb = FMA(KP559016994, Ta, T9);
Chris@10 86 Tj = FNMS(KP559016994, Ta, T9);
Chris@10 87 }
Chris@10 88 Tr = FMA(KP559016994, Tq, Tp);
Chris@10 89 Tv = FNMS(KP559016994, Tq, Tp);
Chris@10 90 Cr[WS(csr, 1)] = FNMS(KP951056516, Tk, Tj);
Chris@10 91 Cr[WS(csr, 3)] = FMA(KP951056516, Tk, Tj);
Chris@10 92 Cr[0] = FMA(KP951056516, Ti, Tb);
Chris@10 93 Cr[WS(csr, 4)] = FNMS(KP951056516, Ti, Tb);
Chris@10 94 Ci[WS(csi, 1)] = FNMS(KP951056516, Tw, Tv);
Chris@10 95 Ci[WS(csi, 3)] = FMA(KP951056516, Tw, Tv);
Chris@10 96 Ci[WS(csi, 4)] = FMS(KP951056516, Tu, Tr);
Chris@10 97 Ci[0] = -(FMA(KP951056516, Tu, Tr));
Chris@10 98 }
Chris@10 99 }
Chris@10 100 }
Chris@10 101
Chris@10 102 static const kr2c_desc desc = { 10, "r2cfII_10", {14, 0, 18, 0}, &GENUS };
Chris@10 103
Chris@10 104 void X(codelet_r2cfII_10) (planner *p) {
Chris@10 105 X(kr2c_register) (p, r2cfII_10, &desc);
Chris@10 106 }
Chris@10 107
Chris@10 108 #else /* HAVE_FMA */
Chris@10 109
Chris@10 110 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include r2cfII.h */
Chris@10 111
Chris@10 112 /*
Chris@10 113 * This function contains 32 FP additions, 12 FP multiplications,
Chris@10 114 * (or, 26 additions, 6 multiplications, 6 fused multiply/add),
Chris@10 115 * 21 stack variables, 4 constants, and 20 memory accesses
Chris@10 116 */
Chris@10 117 #include "r2cfII.h"
Chris@10 118
Chris@10 119 static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 120 {
Chris@10 121 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 122 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 123 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 124 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 125 {
Chris@10 126 INT i;
Chris@10 127 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@10 128 E T1, To, T8, Tq, T9, Tp, Te, Ts, Th, Tn;
Chris@10 129 T1 = R0[0];
Chris@10 130 To = R1[WS(rs, 2)];
Chris@10 131 {
Chris@10 132 E T2, T3, T4, T5, T6, T7;
Chris@10 133 T2 = R0[WS(rs, 2)];
Chris@10 134 T3 = R0[WS(rs, 3)];
Chris@10 135 T4 = T2 - T3;
Chris@10 136 T5 = R0[WS(rs, 4)];
Chris@10 137 T6 = R0[WS(rs, 1)];
Chris@10 138 T7 = T5 - T6;
Chris@10 139 T8 = T4 + T7;
Chris@10 140 Tq = T5 + T6;
Chris@10 141 T9 = KP559016994 * (T4 - T7);
Chris@10 142 Tp = T2 + T3;
Chris@10 143 }
Chris@10 144 {
Chris@10 145 E Tc, Td, Tm, Tf, Tg, Tl;
Chris@10 146 Tc = R1[0];
Chris@10 147 Td = R1[WS(rs, 4)];
Chris@10 148 Tm = Tc + Td;
Chris@10 149 Tf = R1[WS(rs, 1)];
Chris@10 150 Tg = R1[WS(rs, 3)];
Chris@10 151 Tl = Tf + Tg;
Chris@10 152 Te = Tc - Td;
Chris@10 153 Ts = KP559016994 * (Tm + Tl);
Chris@10 154 Th = Tf - Tg;
Chris@10 155 Tn = Tl - Tm;
Chris@10 156 }
Chris@10 157 Cr[WS(csr, 2)] = T1 + T8;
Chris@10 158 Ci[WS(csi, 2)] = Tn - To;
Chris@10 159 {
Chris@10 160 E Ti, Tk, Tb, Tj, Ta;
Chris@10 161 Ti = FMA(KP951056516, Te, KP587785252 * Th);
Chris@10 162 Tk = FNMS(KP587785252, Te, KP951056516 * Th);
Chris@10 163 Ta = FNMS(KP250000000, T8, T1);
Chris@10 164 Tb = T9 + Ta;
Chris@10 165 Tj = Ta - T9;
Chris@10 166 Cr[WS(csr, 4)] = Tb - Ti;
Chris@10 167 Cr[WS(csr, 3)] = Tj + Tk;
Chris@10 168 Cr[0] = Tb + Ti;
Chris@10 169 Cr[WS(csr, 1)] = Tj - Tk;
Chris@10 170 }
Chris@10 171 {
Chris@10 172 E Tr, Tw, Tu, Tv, Tt;
Chris@10 173 Tr = FMA(KP951056516, Tp, KP587785252 * Tq);
Chris@10 174 Tw = FNMS(KP587785252, Tp, KP951056516 * Tq);
Chris@10 175 Tt = FMA(KP250000000, Tn, To);
Chris@10 176 Tu = Ts + Tt;
Chris@10 177 Tv = Tt - Ts;
Chris@10 178 Ci[0] = -(Tr + Tu);
Chris@10 179 Ci[WS(csi, 3)] = Tw + Tv;
Chris@10 180 Ci[WS(csi, 4)] = Tr - Tu;
Chris@10 181 Ci[WS(csi, 1)] = Tv - Tw;
Chris@10 182 }
Chris@10 183 }
Chris@10 184 }
Chris@10 185 }
Chris@10 186
Chris@10 187 static const kr2c_desc desc = { 10, "r2cfII_10", {26, 6, 6, 0}, &GENUS };
Chris@10 188
Chris@10 189 void X(codelet_r2cfII_10) (planner *p) {
Chris@10 190 X(kr2c_register) (p, r2cfII_10, &desc);
Chris@10 191 }
Chris@10 192
Chris@10 193 #endif /* HAVE_FMA */