annotate src/fftw-3.3.3/rdft/scalar/r2cf/hf_7.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:50 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include hf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 72 FP additions, 66 FP multiplications,
Chris@10 32 * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
Chris@10 33 * 62 stack variables, 6 constants, and 28 memory accesses
Chris@10 34 */
Chris@10 35 #include "hf.h"
Chris@10 36
Chris@10 37 static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 40 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 41 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 42 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 43 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 45 {
Chris@10 46 INT m;
Chris@10 47 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
Chris@10 48 E T1, TR, T18, T10, T12, T16, T11, T13;
Chris@10 49 {
Chris@10 50 E T19, T1a, T1i, Te, Tt, Tw, T1b, TM, T1h, Tr, Tu, TS, Tz, TC, Ty;
Chris@10 51 E Tv, TB;
Chris@10 52 T1 = cr[0];
Chris@10 53 T19 = ci[0];
Chris@10 54 {
Chris@10 55 E T9, Tc, TP, Ta, Tb, TO, T7;
Chris@10 56 {
Chris@10 57 E T3, T6, T8, TN, T4, T2, T5;
Chris@10 58 T3 = cr[WS(rs, 1)];
Chris@10 59 T6 = ci[WS(rs, 1)];
Chris@10 60 T2 = W[0];
Chris@10 61 T9 = cr[WS(rs, 6)];
Chris@10 62 Tc = ci[WS(rs, 6)];
Chris@10 63 T8 = W[10];
Chris@10 64 TN = T2 * T6;
Chris@10 65 T4 = T2 * T3;
Chris@10 66 T5 = W[1];
Chris@10 67 TP = T8 * Tc;
Chris@10 68 Ta = T8 * T9;
Chris@10 69 Tb = W[11];
Chris@10 70 TO = FNMS(T5, T3, TN);
Chris@10 71 T7 = FMA(T5, T6, T4);
Chris@10 72 }
Chris@10 73 {
Chris@10 74 E Tg, Tj, Th, TI, Tm, Tp, Tl, Ti, To, TQ, Td, Tf;
Chris@10 75 Tg = cr[WS(rs, 2)];
Chris@10 76 TQ = FNMS(Tb, T9, TP);
Chris@10 77 Td = FMA(Tb, Tc, Ta);
Chris@10 78 Tj = ci[WS(rs, 2)];
Chris@10 79 Tf = W[2];
Chris@10 80 T1a = TO + TQ;
Chris@10 81 TR = TO - TQ;
Chris@10 82 T1i = Td - T7;
Chris@10 83 Te = T7 + Td;
Chris@10 84 Th = Tf * Tg;
Chris@10 85 TI = Tf * Tj;
Chris@10 86 Tm = cr[WS(rs, 5)];
Chris@10 87 Tp = ci[WS(rs, 5)];
Chris@10 88 Tl = W[8];
Chris@10 89 Ti = W[3];
Chris@10 90 To = W[9];
Chris@10 91 {
Chris@10 92 E TJ, Tk, TL, Tq, TK, Tn, Ts;
Chris@10 93 Tt = cr[WS(rs, 3)];
Chris@10 94 TK = Tl * Tp;
Chris@10 95 Tn = Tl * Tm;
Chris@10 96 TJ = FNMS(Ti, Tg, TI);
Chris@10 97 Tk = FMA(Ti, Tj, Th);
Chris@10 98 TL = FNMS(To, Tm, TK);
Chris@10 99 Tq = FMA(To, Tp, Tn);
Chris@10 100 Tw = ci[WS(rs, 3)];
Chris@10 101 Ts = W[4];
Chris@10 102 T1b = TJ + TL;
Chris@10 103 TM = TJ - TL;
Chris@10 104 T1h = Tq - Tk;
Chris@10 105 Tr = Tk + Tq;
Chris@10 106 Tu = Ts * Tt;
Chris@10 107 TS = Ts * Tw;
Chris@10 108 }
Chris@10 109 Tz = cr[WS(rs, 4)];
Chris@10 110 TC = ci[WS(rs, 4)];
Chris@10 111 Ty = W[6];
Chris@10 112 Tv = W[5];
Chris@10 113 TB = W[7];
Chris@10 114 }
Chris@10 115 }
Chris@10 116 {
Chris@10 117 E TF, TT, Tx, TV, TD, T1q, TU, TA;
Chris@10 118 TF = FNMS(KP356895867, Tr, Te);
Chris@10 119 TU = Ty * TC;
Chris@10 120 TA = Ty * Tz;
Chris@10 121 TT = FNMS(Tv, Tt, TS);
Chris@10 122 Tx = FMA(Tv, Tw, Tu);
Chris@10 123 TV = FNMS(TB, Tz, TU);
Chris@10 124 TD = FMA(TB, TC, TA);
Chris@10 125 T1q = FNMS(KP356895867, T1b, T1a);
Chris@10 126 {
Chris@10 127 E TW, TE, T1k, T1f;
Chris@10 128 {
Chris@10 129 E T1e, T1s, TY, T1p, T1u, TH, T1n, T1j, T1c, T1g;
Chris@10 130 T1j = FNMS(KP554958132, T1i, T1h);
Chris@10 131 T1c = TT + TV;
Chris@10 132 TW = TT - TV;
Chris@10 133 T1g = TD - Tx;
Chris@10 134 TE = Tx + TD;
Chris@10 135 {
Chris@10 136 E T1d, T1l, T1r, TX;
Chris@10 137 T1d = FNMS(KP356895867, T1c, T1b);
Chris@10 138 T1l = FNMS(KP356895867, T1a, T1c);
Chris@10 139 T1r = FNMS(KP692021471, T1q, T1c);
Chris@10 140 ci[WS(rs, 6)] = T1a + T1b + T1c + T19;
Chris@10 141 TX = FMA(KP554958132, TW, TR);
Chris@10 142 {
Chris@10 143 E T1o, T1t, TG, T1m;
Chris@10 144 T1o = FMA(KP554958132, T1h, T1g);
Chris@10 145 T1t = FMA(KP554958132, T1g, T1i);
Chris@10 146 TG = FNMS(KP692021471, TF, TE);
Chris@10 147 cr[0] = T1 + Te + Tr + TE;
Chris@10 148 T1e = FNMS(KP692021471, T1d, T1a);
Chris@10 149 T1m = FNMS(KP692021471, T1l, T1b);
Chris@10 150 T1s = FNMS(KP900968867, T1r, T19);
Chris@10 151 TY = FMA(KP801937735, TX, TM);
Chris@10 152 T1p = FNMS(KP801937735, T1o, T1i);
Chris@10 153 T1u = FMA(KP801937735, T1t, T1h);
Chris@10 154 TH = FNMS(KP900968867, TG, T1);
Chris@10 155 T1n = FNMS(KP900968867, T1m, T19);
Chris@10 156 T1k = FNMS(KP801937735, T1j, T1g);
Chris@10 157 }
Chris@10 158 }
Chris@10 159 ci[WS(rs, 5)] = FMA(KP974927912, T1u, T1s);
Chris@10 160 cr[WS(rs, 6)] = FMS(KP974927912, T1u, T1s);
Chris@10 161 cr[WS(rs, 1)] = FMA(KP974927912, TY, TH);
Chris@10 162 ci[0] = FNMS(KP974927912, TY, TH);
Chris@10 163 ci[WS(rs, 4)] = FMA(KP974927912, T1p, T1n);
Chris@10 164 cr[WS(rs, 5)] = FMS(KP974927912, T1p, T1n);
Chris@10 165 T1f = FNMS(KP900968867, T1e, T19);
Chris@10 166 }
Chris@10 167 {
Chris@10 168 E T14, T17, T15, TZ;
Chris@10 169 T14 = FNMS(KP356895867, TE, Tr);
Chris@10 170 T17 = FNMS(KP554958132, TR, TM);
Chris@10 171 TZ = FNMS(KP356895867, Te, TE);
Chris@10 172 ci[WS(rs, 3)] = FMA(KP974927912, T1k, T1f);
Chris@10 173 cr[WS(rs, 4)] = FMS(KP974927912, T1k, T1f);
Chris@10 174 T15 = FNMS(KP692021471, T14, Te);
Chris@10 175 T18 = FNMS(KP801937735, T17, TW);
Chris@10 176 T10 = FNMS(KP692021471, TZ, Tr);
Chris@10 177 T12 = FMA(KP554958132, TM, TW);
Chris@10 178 T16 = FNMS(KP900968867, T15, T1);
Chris@10 179 }
Chris@10 180 }
Chris@10 181 }
Chris@10 182 }
Chris@10 183 T11 = FNMS(KP900968867, T10, T1);
Chris@10 184 T13 = FNMS(KP801937735, T12, TR);
Chris@10 185 cr[WS(rs, 3)] = FMA(KP974927912, T18, T16);
Chris@10 186 ci[WS(rs, 2)] = FNMS(KP974927912, T18, T16);
Chris@10 187 cr[WS(rs, 2)] = FMA(KP974927912, T13, T11);
Chris@10 188 ci[WS(rs, 1)] = FNMS(KP974927912, T13, T11);
Chris@10 189 }
Chris@10 190 }
Chris@10 191 }
Chris@10 192
Chris@10 193 static const tw_instr twinstr[] = {
Chris@10 194 {TW_FULL, 1, 7},
Chris@10 195 {TW_NEXT, 1, 0}
Chris@10 196 };
Chris@10 197
Chris@10 198 static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, {18, 12, 54, 0} };
Chris@10 199
Chris@10 200 void X(codelet_hf_7) (planner *p) {
Chris@10 201 X(khc2hc_register) (p, hf_7, &desc);
Chris@10 202 }
Chris@10 203 #else /* HAVE_FMA */
Chris@10 204
Chris@10 205 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include hf.h */
Chris@10 206
Chris@10 207 /*
Chris@10 208 * This function contains 72 FP additions, 60 FP multiplications,
Chris@10 209 * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
Chris@10 210 * 29 stack variables, 6 constants, and 28 memory accesses
Chris@10 211 */
Chris@10 212 #include "hf.h"
Chris@10 213
Chris@10 214 static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 215 {
Chris@10 216 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@10 217 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 218 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@10 219 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@10 220 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 221 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@10 222 {
Chris@10 223 INT m;
Chris@10 224 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
Chris@10 225 E T1, TT, Tc, TV, TC, TO, Tn, TS, TI, TP, Ty, TU, TF, TQ;
Chris@10 226 T1 = cr[0];
Chris@10 227 TT = ci[0];
Chris@10 228 {
Chris@10 229 E T6, TA, Tb, TB;
Chris@10 230 {
Chris@10 231 E T3, T5, T2, T4;
Chris@10 232 T3 = cr[WS(rs, 1)];
Chris@10 233 T5 = ci[WS(rs, 1)];
Chris@10 234 T2 = W[0];
Chris@10 235 T4 = W[1];
Chris@10 236 T6 = FMA(T2, T3, T4 * T5);
Chris@10 237 TA = FNMS(T4, T3, T2 * T5);
Chris@10 238 }
Chris@10 239 {
Chris@10 240 E T8, Ta, T7, T9;
Chris@10 241 T8 = cr[WS(rs, 6)];
Chris@10 242 Ta = ci[WS(rs, 6)];
Chris@10 243 T7 = W[10];
Chris@10 244 T9 = W[11];
Chris@10 245 Tb = FMA(T7, T8, T9 * Ta);
Chris@10 246 TB = FNMS(T9, T8, T7 * Ta);
Chris@10 247 }
Chris@10 248 Tc = T6 + Tb;
Chris@10 249 TV = TA + TB;
Chris@10 250 TC = TA - TB;
Chris@10 251 TO = Tb - T6;
Chris@10 252 }
Chris@10 253 {
Chris@10 254 E Th, TG, Tm, TH;
Chris@10 255 {
Chris@10 256 E Te, Tg, Td, Tf;
Chris@10 257 Te = cr[WS(rs, 2)];
Chris@10 258 Tg = ci[WS(rs, 2)];
Chris@10 259 Td = W[2];
Chris@10 260 Tf = W[3];
Chris@10 261 Th = FMA(Td, Te, Tf * Tg);
Chris@10 262 TG = FNMS(Tf, Te, Td * Tg);
Chris@10 263 }
Chris@10 264 {
Chris@10 265 E Tj, Tl, Ti, Tk;
Chris@10 266 Tj = cr[WS(rs, 5)];
Chris@10 267 Tl = ci[WS(rs, 5)];
Chris@10 268 Ti = W[8];
Chris@10 269 Tk = W[9];
Chris@10 270 Tm = FMA(Ti, Tj, Tk * Tl);
Chris@10 271 TH = FNMS(Tk, Tj, Ti * Tl);
Chris@10 272 }
Chris@10 273 Tn = Th + Tm;
Chris@10 274 TS = TG + TH;
Chris@10 275 TI = TG - TH;
Chris@10 276 TP = Th - Tm;
Chris@10 277 }
Chris@10 278 {
Chris@10 279 E Ts, TD, Tx, TE;
Chris@10 280 {
Chris@10 281 E Tp, Tr, To, Tq;
Chris@10 282 Tp = cr[WS(rs, 3)];
Chris@10 283 Tr = ci[WS(rs, 3)];
Chris@10 284 To = W[4];
Chris@10 285 Tq = W[5];
Chris@10 286 Ts = FMA(To, Tp, Tq * Tr);
Chris@10 287 TD = FNMS(Tq, Tp, To * Tr);
Chris@10 288 }
Chris@10 289 {
Chris@10 290 E Tu, Tw, Tt, Tv;
Chris@10 291 Tu = cr[WS(rs, 4)];
Chris@10 292 Tw = ci[WS(rs, 4)];
Chris@10 293 Tt = W[6];
Chris@10 294 Tv = W[7];
Chris@10 295 Tx = FMA(Tt, Tu, Tv * Tw);
Chris@10 296 TE = FNMS(Tv, Tu, Tt * Tw);
Chris@10 297 }
Chris@10 298 Ty = Ts + Tx;
Chris@10 299 TU = TD + TE;
Chris@10 300 TF = TD - TE;
Chris@10 301 TQ = Tx - Ts;
Chris@10 302 }
Chris@10 303 {
Chris@10 304 E TL, TK, TZ, T10;
Chris@10 305 cr[0] = T1 + Tc + Tn + Ty;
Chris@10 306 TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
Chris@10 307 TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
Chris@10 308 ci[0] = TK - TL;
Chris@10 309 cr[WS(rs, 1)] = TK + TL;
Chris@10 310 ci[WS(rs, 6)] = TV + TS + TU + TT;
Chris@10 311 TZ = FMA(KP781831482, TO, KP433883739 * TQ) - (KP974927912 * TP);
Chris@10 312 T10 = FMA(KP623489801, TV, TT) + FNMA(KP900968867, TU, KP222520933 * TS);
Chris@10 313 cr[WS(rs, 6)] = TZ - T10;
Chris@10 314 ci[WS(rs, 5)] = TZ + T10;
Chris@10 315 }
Chris@10 316 {
Chris@10 317 E TX, TY, TR, TW;
Chris@10 318 TX = FMA(KP974927912, TO, KP433883739 * TP) - (KP781831482 * TQ);
Chris@10 319 TY = FMA(KP623489801, TU, TT) + FNMA(KP900968867, TS, KP222520933 * TV);
Chris@10 320 cr[WS(rs, 5)] = TX - TY;
Chris@10 321 ci[WS(rs, 4)] = TX + TY;
Chris@10 322 TR = FMA(KP433883739, TO, KP781831482 * TP) + (KP974927912 * TQ);
Chris@10 323 TW = FMA(KP623489801, TS, TT) + FNMA(KP222520933, TU, KP900968867 * TV);
Chris@10 324 cr[WS(rs, 4)] = TR - TW;
Chris@10 325 ci[WS(rs, 3)] = TR + TW;
Chris@10 326 }
Chris@10 327 {
Chris@10 328 E TN, TM, TJ, Tz;
Chris@10 329 TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
Chris@10 330 TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
Chris@10 331 ci[WS(rs, 2)] = TM - TN;
Chris@10 332 cr[WS(rs, 3)] = TM + TN;
Chris@10 333 TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
Chris@10 334 Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
Chris@10 335 ci[WS(rs, 1)] = Tz - TJ;
Chris@10 336 cr[WS(rs, 2)] = Tz + TJ;
Chris@10 337 }
Chris@10 338 }
Chris@10 339 }
Chris@10 340 }
Chris@10 341
Chris@10 342 static const tw_instr twinstr[] = {
Chris@10 343 {TW_FULL, 1, 7},
Chris@10 344 {TW_NEXT, 1, 0}
Chris@10 345 };
Chris@10 346
Chris@10 347 static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, {36, 24, 36, 0} };
Chris@10 348
Chris@10 349 void X(codelet_hf_7) (planner *p) {
Chris@10 350 X(khc2hc_register) (p, hf_7, &desc);
Chris@10 351 }
Chris@10 352 #endif /* HAVE_FMA */