annotate src/fftw-3.3.3/rdft/scalar/r2cf/hf_5.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:50 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 5 -dit -name hf_5 -include hf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@10 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@10 33 * 43 stack variables, 4 constants, and 20 memory accesses
Chris@10 34 */
Chris@10 35 #include "hf.h"
Chris@10 36
Chris@10 37 static void hf_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@10 46 E T1, TJ, TK, TA, TR, Te, TC, Tk, TE, Tq;
Chris@10 47 {
Chris@10 48 E Tg, Tj, Tm, TB, Th, Tp, Tl, Ti, To, TD, Tn;
Chris@10 49 T1 = cr[0];
Chris@10 50 TJ = ci[0];
Chris@10 51 {
Chris@10 52 E T9, Tc, Ty, Ta, Tb, Tx, T7, Tf, Tz, Td;
Chris@10 53 {
Chris@10 54 E T3, T6, T8, Tw, T4, T2, T5;
Chris@10 55 T3 = cr[WS(rs, 1)];
Chris@10 56 T6 = ci[WS(rs, 1)];
Chris@10 57 T2 = W[0];
Chris@10 58 T9 = cr[WS(rs, 4)];
Chris@10 59 Tc = ci[WS(rs, 4)];
Chris@10 60 T8 = W[6];
Chris@10 61 Tw = T2 * T6;
Chris@10 62 T4 = T2 * T3;
Chris@10 63 T5 = W[1];
Chris@10 64 Ty = T8 * Tc;
Chris@10 65 Ta = T8 * T9;
Chris@10 66 Tb = W[7];
Chris@10 67 Tx = FNMS(T5, T3, Tw);
Chris@10 68 T7 = FMA(T5, T6, T4);
Chris@10 69 }
Chris@10 70 Tg = cr[WS(rs, 2)];
Chris@10 71 Tz = FNMS(Tb, T9, Ty);
Chris@10 72 Td = FMA(Tb, Tc, Ta);
Chris@10 73 Tj = ci[WS(rs, 2)];
Chris@10 74 Tf = W[2];
Chris@10 75 TK = Tx + Tz;
Chris@10 76 TA = Tx - Tz;
Chris@10 77 TR = Td - T7;
Chris@10 78 Te = T7 + Td;
Chris@10 79 Tm = cr[WS(rs, 3)];
Chris@10 80 TB = Tf * Tj;
Chris@10 81 Th = Tf * Tg;
Chris@10 82 Tp = ci[WS(rs, 3)];
Chris@10 83 Tl = W[4];
Chris@10 84 Ti = W[3];
Chris@10 85 To = W[5];
Chris@10 86 }
Chris@10 87 TD = Tl * Tp;
Chris@10 88 Tn = Tl * Tm;
Chris@10 89 TC = FNMS(Ti, Tg, TB);
Chris@10 90 Tk = FMA(Ti, Tj, Th);
Chris@10 91 TE = FNMS(To, Tm, TD);
Chris@10 92 Tq = FMA(To, Tp, Tn);
Chris@10 93 }
Chris@10 94 {
Chris@10 95 E TG, TI, TO, TS, TU, Tu, TN, Tt, TL, TF;
Chris@10 96 TL = TC + TE;
Chris@10 97 TF = TC - TE;
Chris@10 98 {
Chris@10 99 E Tr, TQ, TM, Ts;
Chris@10 100 Tr = Tk + Tq;
Chris@10 101 TQ = Tk - Tq;
Chris@10 102 TG = FMA(KP618033988, TF, TA);
Chris@10 103 TI = FNMS(KP618033988, TA, TF);
Chris@10 104 TO = TK - TL;
Chris@10 105 TM = TK + TL;
Chris@10 106 TS = FMA(KP618033988, TR, TQ);
Chris@10 107 TU = FNMS(KP618033988, TQ, TR);
Chris@10 108 Tu = Te - Tr;
Chris@10 109 Ts = Te + Tr;
Chris@10 110 ci[WS(rs, 4)] = TM + TJ;
Chris@10 111 TN = FNMS(KP250000000, TM, TJ);
Chris@10 112 cr[0] = T1 + Ts;
Chris@10 113 Tt = FNMS(KP250000000, Ts, T1);
Chris@10 114 }
Chris@10 115 {
Chris@10 116 E TT, TP, Tv, TH;
Chris@10 117 TT = FMA(KP559016994, TO, TN);
Chris@10 118 TP = FNMS(KP559016994, TO, TN);
Chris@10 119 Tv = FMA(KP559016994, Tu, Tt);
Chris@10 120 TH = FNMS(KP559016994, Tu, Tt);
Chris@10 121 ci[WS(rs, 2)] = FMA(KP951056516, TS, TP);
Chris@10 122 cr[WS(rs, 3)] = FMS(KP951056516, TS, TP);
Chris@10 123 ci[WS(rs, 3)] = FMA(KP951056516, TU, TT);
Chris@10 124 cr[WS(rs, 4)] = FMS(KP951056516, TU, TT);
Chris@10 125 ci[WS(rs, 1)] = FMA(KP951056516, TI, TH);
Chris@10 126 cr[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
Chris@10 127 cr[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
Chris@10 128 ci[0] = FNMS(KP951056516, TG, Tv);
Chris@10 129 }
Chris@10 130 }
Chris@10 131 }
Chris@10 132 }
Chris@10 133 }
Chris@10 134
Chris@10 135 static const tw_instr twinstr[] = {
Chris@10 136 {TW_FULL, 1, 5},
Chris@10 137 {TW_NEXT, 1, 0}
Chris@10 138 };
Chris@10 139
Chris@10 140 static const hc2hc_desc desc = { 5, "hf_5", twinstr, &GENUS, {14, 8, 26, 0} };
Chris@10 141
Chris@10 142 void X(codelet_hf_5) (planner *p) {
Chris@10 143 X(khc2hc_register) (p, hf_5, &desc);
Chris@10 144 }
Chris@10 145 #else /* HAVE_FMA */
Chris@10 146
Chris@10 147 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 5 -dit -name hf_5 -include hf.h */
Chris@10 148
Chris@10 149 /*
Chris@10 150 * This function contains 40 FP additions, 28 FP multiplications,
Chris@10 151 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@10 152 * 29 stack variables, 4 constants, and 20 memory accesses
Chris@10 153 */
Chris@10 154 #include "hf.h"
Chris@10 155
Chris@10 156 static void hf_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 157 {
Chris@10 158 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 159 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 160 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 161 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 162 {
Chris@10 163 INT m;
Chris@10 164 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@10 165 E T1, TE, Tu, Tx, TC, TB, TF, TG, TH, Tc, Tn, To;
Chris@10 166 T1 = cr[0];
Chris@10 167 TE = ci[0];
Chris@10 168 {
Chris@10 169 E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
Chris@10 170 {
Chris@10 171 E T3, T5, T2, T4;
Chris@10 172 T3 = cr[WS(rs, 1)];
Chris@10 173 T5 = ci[WS(rs, 1)];
Chris@10 174 T2 = W[0];
Chris@10 175 T4 = W[1];
Chris@10 176 T6 = FMA(T2, T3, T4 * T5);
Chris@10 177 Ts = FNMS(T4, T3, T2 * T5);
Chris@10 178 }
Chris@10 179 {
Chris@10 180 E Tj, Tl, Ti, Tk;
Chris@10 181 Tj = cr[WS(rs, 3)];
Chris@10 182 Tl = ci[WS(rs, 3)];
Chris@10 183 Ti = W[4];
Chris@10 184 Tk = W[5];
Chris@10 185 Tm = FMA(Ti, Tj, Tk * Tl);
Chris@10 186 Tw = FNMS(Tk, Tj, Ti * Tl);
Chris@10 187 }
Chris@10 188 {
Chris@10 189 E T8, Ta, T7, T9;
Chris@10 190 T8 = cr[WS(rs, 4)];
Chris@10 191 Ta = ci[WS(rs, 4)];
Chris@10 192 T7 = W[6];
Chris@10 193 T9 = W[7];
Chris@10 194 Tb = FMA(T7, T8, T9 * Ta);
Chris@10 195 Tt = FNMS(T9, T8, T7 * Ta);
Chris@10 196 }
Chris@10 197 {
Chris@10 198 E Te, Tg, Td, Tf;
Chris@10 199 Te = cr[WS(rs, 2)];
Chris@10 200 Tg = ci[WS(rs, 2)];
Chris@10 201 Td = W[2];
Chris@10 202 Tf = W[3];
Chris@10 203 Th = FMA(Td, Te, Tf * Tg);
Chris@10 204 Tv = FNMS(Tf, Te, Td * Tg);
Chris@10 205 }
Chris@10 206 Tu = Ts - Tt;
Chris@10 207 Tx = Tv - Tw;
Chris@10 208 TC = Th - Tm;
Chris@10 209 TB = Tb - T6;
Chris@10 210 TF = Ts + Tt;
Chris@10 211 TG = Tv + Tw;
Chris@10 212 TH = TF + TG;
Chris@10 213 Tc = T6 + Tb;
Chris@10 214 Tn = Th + Tm;
Chris@10 215 To = Tc + Tn;
Chris@10 216 }
Chris@10 217 cr[0] = T1 + To;
Chris@10 218 {
Chris@10 219 E Ty, TA, Tr, Tz, Tp, Tq;
Chris@10 220 Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
Chris@10 221 TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
Chris@10 222 Tp = KP559016994 * (Tc - Tn);
Chris@10 223 Tq = FNMS(KP250000000, To, T1);
Chris@10 224 Tr = Tp + Tq;
Chris@10 225 Tz = Tq - Tp;
Chris@10 226 ci[0] = Tr - Ty;
Chris@10 227 ci[WS(rs, 1)] = Tz + TA;
Chris@10 228 cr[WS(rs, 1)] = Tr + Ty;
Chris@10 229 cr[WS(rs, 2)] = Tz - TA;
Chris@10 230 }
Chris@10 231 ci[WS(rs, 4)] = TH + TE;
Chris@10 232 {
Chris@10 233 E TD, TL, TK, TM, TI, TJ;
Chris@10 234 TD = FMA(KP587785252, TB, KP951056516 * TC);
Chris@10 235 TL = FNMS(KP587785252, TC, KP951056516 * TB);
Chris@10 236 TI = FNMS(KP250000000, TH, TE);
Chris@10 237 TJ = KP559016994 * (TF - TG);
Chris@10 238 TK = TI - TJ;
Chris@10 239 TM = TJ + TI;
Chris@10 240 cr[WS(rs, 3)] = TD - TK;
Chris@10 241 ci[WS(rs, 3)] = TL + TM;
Chris@10 242 ci[WS(rs, 2)] = TD + TK;
Chris@10 243 cr[WS(rs, 4)] = TL - TM;
Chris@10 244 }
Chris@10 245 }
Chris@10 246 }
Chris@10 247 }
Chris@10 248
Chris@10 249 static const tw_instr twinstr[] = {
Chris@10 250 {TW_FULL, 1, 5},
Chris@10 251 {TW_NEXT, 1, 0}
Chris@10 252 };
Chris@10 253
Chris@10 254 static const hc2hc_desc desc = { 5, "hf_5", twinstr, &GENUS, {26, 14, 14, 0} };
Chris@10 255
Chris@10 256 void X(codelet_hf_5) (planner *p) {
Chris@10 257 X(khc2hc_register) (p, hf_5, &desc);
Chris@10 258 }
Chris@10 259 #endif /* HAVE_FMA */