annotate src/fftw-3.3.3/rdft/scalar/r2cf/hf_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:52 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hf_10 -include hf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 102 FP additions, 72 FP multiplications,
Chris@10 32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add),
Chris@10 33 * 72 stack variables, 4 constants, and 40 memory accesses
Chris@10 34 */
Chris@10 35 #include "hf.h"
Chris@10 36
Chris@10 37 static void hf_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
Chris@10 46 E T29, T2d, T2c, T2e;
Chris@10 47 {
Chris@10 48 E T23, T1U, T8, T12, T1y, T1P, T25, T1H, T2b, T18, T10, T1Y, T1I, Tl, T13;
Chris@10 49 E T1J, Ty, T14, T1n, T1O, T24, T1K;
Chris@10 50 {
Chris@10 51 E T1, T1R, T3, T6, T2, T5;
Chris@10 52 T1 = cr[0];
Chris@10 53 T1R = ci[0];
Chris@10 54 T3 = cr[WS(rs, 5)];
Chris@10 55 T6 = ci[WS(rs, 5)];
Chris@10 56 T2 = W[8];
Chris@10 57 T5 = W[9];
Chris@10 58 {
Chris@10 59 E T1p, TY, T1x, T1F, TM, T16, T1r, TS;
Chris@10 60 {
Chris@10 61 E TF, T1w, TO, TR, T1u, TL, TN, TQ, T1q, TP;
Chris@10 62 {
Chris@10 63 E TU, TX, TT, TW;
Chris@10 64 {
Chris@10 65 E TB, TE, T1S, T4, TA, TD;
Chris@10 66 TB = cr[WS(rs, 4)];
Chris@10 67 TE = ci[WS(rs, 4)];
Chris@10 68 T1S = T2 * T6;
Chris@10 69 T4 = T2 * T3;
Chris@10 70 TA = W[6];
Chris@10 71 TD = W[7];
Chris@10 72 {
Chris@10 73 E T1T, T7, T1v, TC;
Chris@10 74 T1T = FNMS(T5, T3, T1S);
Chris@10 75 T7 = FMA(T5, T6, T4);
Chris@10 76 T1v = TA * TE;
Chris@10 77 TC = TA * TB;
Chris@10 78 T23 = T1T + T1R;
Chris@10 79 T1U = T1R - T1T;
Chris@10 80 T8 = T1 - T7;
Chris@10 81 T12 = T1 + T7;
Chris@10 82 TF = FMA(TD, TE, TC);
Chris@10 83 T1w = FNMS(TD, TB, T1v);
Chris@10 84 }
Chris@10 85 }
Chris@10 86 TU = cr[WS(rs, 1)];
Chris@10 87 TX = ci[WS(rs, 1)];
Chris@10 88 TT = W[0];
Chris@10 89 TW = W[1];
Chris@10 90 {
Chris@10 91 E TH, TK, TJ, T1t, TI, T1o, TV, TG;
Chris@10 92 TH = cr[WS(rs, 9)];
Chris@10 93 TK = ci[WS(rs, 9)];
Chris@10 94 T1o = TT * TX;
Chris@10 95 TV = TT * TU;
Chris@10 96 TG = W[16];
Chris@10 97 TJ = W[17];
Chris@10 98 T1p = FNMS(TW, TU, T1o);
Chris@10 99 TY = FMA(TW, TX, TV);
Chris@10 100 T1t = TG * TK;
Chris@10 101 TI = TG * TH;
Chris@10 102 TO = cr[WS(rs, 6)];
Chris@10 103 TR = ci[WS(rs, 6)];
Chris@10 104 T1u = FNMS(TJ, TH, T1t);
Chris@10 105 TL = FMA(TJ, TK, TI);
Chris@10 106 TN = W[10];
Chris@10 107 TQ = W[11];
Chris@10 108 }
Chris@10 109 }
Chris@10 110 T1x = T1u - T1w;
Chris@10 111 T1F = T1w + T1u;
Chris@10 112 TM = TF - TL;
Chris@10 113 T16 = TF + TL;
Chris@10 114 T1q = TN * TR;
Chris@10 115 TP = TN * TO;
Chris@10 116 T1r = FNMS(TQ, TO, T1q);
Chris@10 117 TS = FMA(TQ, TR, TP);
Chris@10 118 }
Chris@10 119 {
Chris@10 120 E T1l, Te, T1e, Tx, Tn, Tq, Tp, T1j, Tk, T1f, To;
Chris@10 121 {
Chris@10 122 E Tt, Tw, Tv, T1d, Tu;
Chris@10 123 {
Chris@10 124 E Ta, Td, T9, Tc, T1k, Tb, Ts;
Chris@10 125 Ta = cr[WS(rs, 2)];
Chris@10 126 Td = ci[WS(rs, 2)];
Chris@10 127 {
Chris@10 128 E T1G, T1s, TZ, T17;
Chris@10 129 T1G = T1r + T1p;
Chris@10 130 T1s = T1p - T1r;
Chris@10 131 TZ = TS - TY;
Chris@10 132 T17 = TS + TY;
Chris@10 133 T1y = T1s - T1x;
Chris@10 134 T1P = T1x + T1s;
Chris@10 135 T25 = T1F + T1G;
Chris@10 136 T1H = T1F - T1G;
Chris@10 137 T2b = T16 - T17;
Chris@10 138 T18 = T16 + T17;
Chris@10 139 T10 = TM + TZ;
Chris@10 140 T1Y = TZ - TM;
Chris@10 141 T9 = W[2];
Chris@10 142 }
Chris@10 143 Tc = W[3];
Chris@10 144 Tt = cr[WS(rs, 3)];
Chris@10 145 Tw = ci[WS(rs, 3)];
Chris@10 146 T1k = T9 * Td;
Chris@10 147 Tb = T9 * Ta;
Chris@10 148 Ts = W[4];
Chris@10 149 Tv = W[5];
Chris@10 150 T1l = FNMS(Tc, Ta, T1k);
Chris@10 151 Te = FMA(Tc, Td, Tb);
Chris@10 152 T1d = Ts * Tw;
Chris@10 153 Tu = Ts * Tt;
Chris@10 154 }
Chris@10 155 {
Chris@10 156 E Tg, Tj, Tf, Ti, T1i, Th, Tm;
Chris@10 157 Tg = cr[WS(rs, 7)];
Chris@10 158 Tj = ci[WS(rs, 7)];
Chris@10 159 T1e = FNMS(Tv, Tt, T1d);
Chris@10 160 Tx = FMA(Tv, Tw, Tu);
Chris@10 161 Tf = W[12];
Chris@10 162 Ti = W[13];
Chris@10 163 Tn = cr[WS(rs, 8)];
Chris@10 164 Tq = ci[WS(rs, 8)];
Chris@10 165 T1i = Tf * Tj;
Chris@10 166 Th = Tf * Tg;
Chris@10 167 Tm = W[14];
Chris@10 168 Tp = W[15];
Chris@10 169 T1j = FNMS(Ti, Tg, T1i);
Chris@10 170 Tk = FMA(Ti, Tj, Th);
Chris@10 171 T1f = Tm * Tq;
Chris@10 172 To = Tm * Tn;
Chris@10 173 }
Chris@10 174 }
Chris@10 175 {
Chris@10 176 E T1m, T1g, Tr, T1h;
Chris@10 177 T1m = T1j - T1l;
Chris@10 178 T1I = T1l + T1j;
Chris@10 179 Tl = Te - Tk;
Chris@10 180 T13 = Te + Tk;
Chris@10 181 T1g = FNMS(Tp, Tn, T1f);
Chris@10 182 Tr = FMA(Tp, Tq, To);
Chris@10 183 T1J = T1g + T1e;
Chris@10 184 T1h = T1e - T1g;
Chris@10 185 Ty = Tr - Tx;
Chris@10 186 T14 = Tr + Tx;
Chris@10 187 T1n = T1h - T1m;
Chris@10 188 T1O = T1m + T1h;
Chris@10 189 }
Chris@10 190 }
Chris@10 191 }
Chris@10 192 }
Chris@10 193 T24 = T1I + T1J;
Chris@10 194 T1K = T1I - T1J;
Chris@10 195 {
Chris@10 196 E T2a, T15, Tz, T1Z;
Chris@10 197 T2a = T13 - T14;
Chris@10 198 T15 = T13 + T14;
Chris@10 199 Tz = Tl + Ty;
Chris@10 200 T1Z = Ty - Tl;
Chris@10 201 {
Chris@10 202 E T1L, T1N, T1E, T1M;
Chris@10 203 {
Chris@10 204 E T19, T1D, T1C, T11, T1b;
Chris@10 205 T19 = T15 + T18;
Chris@10 206 T1D = T15 - T18;
Chris@10 207 T11 = Tz + T10;
Chris@10 208 T1b = Tz - T10;
Chris@10 209 {
Chris@10 210 E T1B, T1z, T1a, T1A, T1c;
Chris@10 211 T1B = FNMS(KP618033988, T1n, T1y);
Chris@10 212 T1z = FMA(KP618033988, T1y, T1n);
Chris@10 213 ci[WS(rs, 4)] = T8 + T11;
Chris@10 214 T1a = FNMS(KP250000000, T11, T8);
Chris@10 215 T1A = FNMS(KP559016994, T1b, T1a);
Chris@10 216 T1c = FMA(KP559016994, T1b, T1a);
Chris@10 217 T1C = FNMS(KP250000000, T19, T12);
Chris@10 218 T1L = FNMS(KP618033988, T1K, T1H);
Chris@10 219 T1N = FMA(KP618033988, T1H, T1K);
Chris@10 220 cr[WS(rs, 1)] = FMA(KP951056516, T1z, T1c);
Chris@10 221 ci[0] = FNMS(KP951056516, T1z, T1c);
Chris@10 222 cr[WS(rs, 3)] = FMA(KP951056516, T1B, T1A);
Chris@10 223 ci[WS(rs, 2)] = FNMS(KP951056516, T1B, T1A);
Chris@10 224 }
Chris@10 225 cr[0] = T12 + T19;
Chris@10 226 T1E = FNMS(KP559016994, T1D, T1C);
Chris@10 227 T1M = FMA(KP559016994, T1D, T1C);
Chris@10 228 }
Chris@10 229 {
Chris@10 230 E T1X, T21, T20, T22, T1Q, T1W, T1V, T26, T28, T27;
Chris@10 231 T1Q = T1O + T1P;
Chris@10 232 T1W = T1P - T1O;
Chris@10 233 ci[WS(rs, 3)] = FMA(KP951056516, T1N, T1M);
Chris@10 234 cr[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M);
Chris@10 235 ci[WS(rs, 1)] = FMA(KP951056516, T1L, T1E);
Chris@10 236 cr[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E);
Chris@10 237 T1V = FMA(KP250000000, T1Q, T1U);
Chris@10 238 cr[WS(rs, 5)] = T1Q - T1U;
Chris@10 239 T1X = FNMS(KP559016994, T1W, T1V);
Chris@10 240 T21 = FMA(KP559016994, T1W, T1V);
Chris@10 241 T20 = FNMS(KP618033988, T1Z, T1Y);
Chris@10 242 T22 = FMA(KP618033988, T1Y, T1Z);
Chris@10 243 T26 = T24 + T25;
Chris@10 244 T28 = T24 - T25;
Chris@10 245 ci[WS(rs, 8)] = FMA(KP951056516, T22, T21);
Chris@10 246 cr[WS(rs, 9)] = FMS(KP951056516, T22, T21);
Chris@10 247 ci[WS(rs, 6)] = FMA(KP951056516, T20, T1X);
Chris@10 248 cr[WS(rs, 7)] = FMS(KP951056516, T20, T1X);
Chris@10 249 T27 = FNMS(KP250000000, T26, T23);
Chris@10 250 ci[WS(rs, 9)] = T26 + T23;
Chris@10 251 T29 = FMA(KP559016994, T28, T27);
Chris@10 252 T2d = FNMS(KP559016994, T28, T27);
Chris@10 253 T2c = FMA(KP618033988, T2b, T2a);
Chris@10 254 T2e = FNMS(KP618033988, T2a, T2b);
Chris@10 255 }
Chris@10 256 }
Chris@10 257 }
Chris@10 258 }
Chris@10 259 ci[WS(rs, 7)] = FMA(KP951056516, T2e, T2d);
Chris@10 260 cr[WS(rs, 8)] = FMS(KP951056516, T2e, T2d);
Chris@10 261 ci[WS(rs, 5)] = FMA(KP951056516, T2c, T29);
Chris@10 262 cr[WS(rs, 6)] = FMS(KP951056516, T2c, T29);
Chris@10 263 }
Chris@10 264 }
Chris@10 265 }
Chris@10 266
Chris@10 267 static const tw_instr twinstr[] = {
Chris@10 268 {TW_FULL, 1, 10},
Chris@10 269 {TW_NEXT, 1, 0}
Chris@10 270 };
Chris@10 271
Chris@10 272 static const hc2hc_desc desc = { 10, "hf_10", twinstr, &GENUS, {48, 18, 54, 0} };
Chris@10 273
Chris@10 274 void X(codelet_hf_10) (planner *p) {
Chris@10 275 X(khc2hc_register) (p, hf_10, &desc);
Chris@10 276 }
Chris@10 277 #else /* HAVE_FMA */
Chris@10 278
Chris@10 279 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hf_10 -include hf.h */
Chris@10 280
Chris@10 281 /*
Chris@10 282 * This function contains 102 FP additions, 60 FP multiplications,
Chris@10 283 * (or, 72 additions, 30 multiplications, 30 fused multiply/add),
Chris@10 284 * 45 stack variables, 4 constants, and 40 memory accesses
Chris@10 285 */
Chris@10 286 #include "hf.h"
Chris@10 287
Chris@10 288 static void hf_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 289 {
Chris@10 290 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 291 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 292 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 293 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 294 {
Chris@10 295 INT m;
Chris@10 296 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
Chris@10 297 E T7, T1R, TT, T1C, TF, TQ, TR, T1o, T1p, T1P, TX, TY, TZ, T1d, T1g;
Chris@10 298 E T1x, Ti, Tt, Tu, T1r, T1s, T1O, TU, TV, TW, T16, T19, T1y;
Chris@10 299 {
Chris@10 300 E T1, T1A, T6, T1B;
Chris@10 301 T1 = cr[0];
Chris@10 302 T1A = ci[0];
Chris@10 303 {
Chris@10 304 E T3, T5, T2, T4;
Chris@10 305 T3 = cr[WS(rs, 5)];
Chris@10 306 T5 = ci[WS(rs, 5)];
Chris@10 307 T2 = W[8];
Chris@10 308 T4 = W[9];
Chris@10 309 T6 = FMA(T2, T3, T4 * T5);
Chris@10 310 T1B = FNMS(T4, T3, T2 * T5);
Chris@10 311 }
Chris@10 312 T7 = T1 - T6;
Chris@10 313 T1R = T1B + T1A;
Chris@10 314 TT = T1 + T6;
Chris@10 315 T1C = T1A - T1B;
Chris@10 316 }
Chris@10 317 {
Chris@10 318 E Tz, T1b, TP, T1e, TE, T1c, TK, T1f;
Chris@10 319 {
Chris@10 320 E Tw, Ty, Tv, Tx;
Chris@10 321 Tw = cr[WS(rs, 4)];
Chris@10 322 Ty = ci[WS(rs, 4)];
Chris@10 323 Tv = W[6];
Chris@10 324 Tx = W[7];
Chris@10 325 Tz = FMA(Tv, Tw, Tx * Ty);
Chris@10 326 T1b = FNMS(Tx, Tw, Tv * Ty);
Chris@10 327 }
Chris@10 328 {
Chris@10 329 E TM, TO, TL, TN;
Chris@10 330 TM = cr[WS(rs, 1)];
Chris@10 331 TO = ci[WS(rs, 1)];
Chris@10 332 TL = W[0];
Chris@10 333 TN = W[1];
Chris@10 334 TP = FMA(TL, TM, TN * TO);
Chris@10 335 T1e = FNMS(TN, TM, TL * TO);
Chris@10 336 }
Chris@10 337 {
Chris@10 338 E TB, TD, TA, TC;
Chris@10 339 TB = cr[WS(rs, 9)];
Chris@10 340 TD = ci[WS(rs, 9)];
Chris@10 341 TA = W[16];
Chris@10 342 TC = W[17];
Chris@10 343 TE = FMA(TA, TB, TC * TD);
Chris@10 344 T1c = FNMS(TC, TB, TA * TD);
Chris@10 345 }
Chris@10 346 {
Chris@10 347 E TH, TJ, TG, TI;
Chris@10 348 TH = cr[WS(rs, 6)];
Chris@10 349 TJ = ci[WS(rs, 6)];
Chris@10 350 TG = W[10];
Chris@10 351 TI = W[11];
Chris@10 352 TK = FMA(TG, TH, TI * TJ);
Chris@10 353 T1f = FNMS(TI, TH, TG * TJ);
Chris@10 354 }
Chris@10 355 TF = Tz - TE;
Chris@10 356 TQ = TK - TP;
Chris@10 357 TR = TF + TQ;
Chris@10 358 T1o = T1b + T1c;
Chris@10 359 T1p = T1f + T1e;
Chris@10 360 T1P = T1o + T1p;
Chris@10 361 TX = Tz + TE;
Chris@10 362 TY = TK + TP;
Chris@10 363 TZ = TX + TY;
Chris@10 364 T1d = T1b - T1c;
Chris@10 365 T1g = T1e - T1f;
Chris@10 366 T1x = T1g - T1d;
Chris@10 367 }
Chris@10 368 {
Chris@10 369 E Tc, T14, Ts, T18, Th, T15, Tn, T17;
Chris@10 370 {
Chris@10 371 E T9, Tb, T8, Ta;
Chris@10 372 T9 = cr[WS(rs, 2)];
Chris@10 373 Tb = ci[WS(rs, 2)];
Chris@10 374 T8 = W[2];
Chris@10 375 Ta = W[3];
Chris@10 376 Tc = FMA(T8, T9, Ta * Tb);
Chris@10 377 T14 = FNMS(Ta, T9, T8 * Tb);
Chris@10 378 }
Chris@10 379 {
Chris@10 380 E Tp, Tr, To, Tq;
Chris@10 381 Tp = cr[WS(rs, 3)];
Chris@10 382 Tr = ci[WS(rs, 3)];
Chris@10 383 To = W[4];
Chris@10 384 Tq = W[5];
Chris@10 385 Ts = FMA(To, Tp, Tq * Tr);
Chris@10 386 T18 = FNMS(Tq, Tp, To * Tr);
Chris@10 387 }
Chris@10 388 {
Chris@10 389 E Te, Tg, Td, Tf;
Chris@10 390 Te = cr[WS(rs, 7)];
Chris@10 391 Tg = ci[WS(rs, 7)];
Chris@10 392 Td = W[12];
Chris@10 393 Tf = W[13];
Chris@10 394 Th = FMA(Td, Te, Tf * Tg);
Chris@10 395 T15 = FNMS(Tf, Te, Td * Tg);
Chris@10 396 }
Chris@10 397 {
Chris@10 398 E Tk, Tm, Tj, Tl;
Chris@10 399 Tk = cr[WS(rs, 8)];
Chris@10 400 Tm = ci[WS(rs, 8)];
Chris@10 401 Tj = W[14];
Chris@10 402 Tl = W[15];
Chris@10 403 Tn = FMA(Tj, Tk, Tl * Tm);
Chris@10 404 T17 = FNMS(Tl, Tk, Tj * Tm);
Chris@10 405 }
Chris@10 406 Ti = Tc - Th;
Chris@10 407 Tt = Tn - Ts;
Chris@10 408 Tu = Ti + Tt;
Chris@10 409 T1r = T14 + T15;
Chris@10 410 T1s = T17 + T18;
Chris@10 411 T1O = T1r + T1s;
Chris@10 412 TU = Tc + Th;
Chris@10 413 TV = Tn + Ts;
Chris@10 414 TW = TU + TV;
Chris@10 415 T16 = T14 - T15;
Chris@10 416 T19 = T17 - T18;
Chris@10 417 T1y = T16 + T19;
Chris@10 418 }
Chris@10 419 {
Chris@10 420 E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13;
Chris@10 421 T11 = KP559016994 * (Tu - TR);
Chris@10 422 TS = Tu + TR;
Chris@10 423 T12 = FNMS(KP250000000, TS, T7);
Chris@10 424 T1a = T16 - T19;
Chris@10 425 T1h = T1d + T1g;
Chris@10 426 T1i = FMA(KP951056516, T1a, KP587785252 * T1h);
Chris@10 427 T1k = FNMS(KP587785252, T1a, KP951056516 * T1h);
Chris@10 428 ci[WS(rs, 4)] = T7 + TS;
Chris@10 429 T1j = T12 - T11;
Chris@10 430 ci[WS(rs, 2)] = T1j - T1k;
Chris@10 431 cr[WS(rs, 3)] = T1j + T1k;
Chris@10 432 T13 = T11 + T12;
Chris@10 433 ci[0] = T13 - T1i;
Chris@10 434 cr[WS(rs, 1)] = T13 + T1i;
Chris@10 435 }
Chris@10 436 {
Chris@10 437 E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n;
Chris@10 438 T1m = KP559016994 * (TW - TZ);
Chris@10 439 T10 = TW + TZ;
Chris@10 440 T1l = FNMS(KP250000000, T10, TT);
Chris@10 441 T1q = T1o - T1p;
Chris@10 442 T1t = T1r - T1s;
Chris@10 443 T1u = FNMS(KP587785252, T1t, KP951056516 * T1q);
Chris@10 444 T1w = FMA(KP951056516, T1t, KP587785252 * T1q);
Chris@10 445 cr[0] = TT + T10;
Chris@10 446 T1v = T1m + T1l;
Chris@10 447 cr[WS(rs, 4)] = T1v - T1w;
Chris@10 448 ci[WS(rs, 3)] = T1v + T1w;
Chris@10 449 T1n = T1l - T1m;
Chris@10 450 cr[WS(rs, 2)] = T1n - T1u;
Chris@10 451 ci[WS(rs, 1)] = T1n + T1u;
Chris@10 452 }
Chris@10 453 {
Chris@10 454 E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I;
Chris@10 455 T1H = KP559016994 * (T1y + T1x);
Chris@10 456 T1z = T1x - T1y;
Chris@10 457 T1G = FMA(KP250000000, T1z, T1C);
Chris@10 458 T1D = Ti - Tt;
Chris@10 459 T1E = TQ - TF;
Chris@10 460 T1F = FMA(KP587785252, T1D, KP951056516 * T1E);
Chris@10 461 T1J = FNMS(KP951056516, T1D, KP587785252 * T1E);
Chris@10 462 cr[WS(rs, 5)] = T1z - T1C;
Chris@10 463 T1K = T1H + T1G;
Chris@10 464 cr[WS(rs, 9)] = T1J - T1K;
Chris@10 465 ci[WS(rs, 8)] = T1J + T1K;
Chris@10 466 T1I = T1G - T1H;
Chris@10 467 cr[WS(rs, 7)] = T1F - T1I;
Chris@10 468 ci[WS(rs, 6)] = T1F + T1I;
Chris@10 469 }
Chris@10 470 {
Chris@10 471 E T1Q, T1S, T1T, T1N, T1V, T1L, T1M, T1W, T1U;
Chris@10 472 T1Q = KP559016994 * (T1O - T1P);
Chris@10 473 T1S = T1O + T1P;
Chris@10 474 T1T = FNMS(KP250000000, T1S, T1R);
Chris@10 475 T1L = TU - TV;
Chris@10 476 T1M = TX - TY;
Chris@10 477 T1N = FMA(KP951056516, T1L, KP587785252 * T1M);
Chris@10 478 T1V = FNMS(KP587785252, T1L, KP951056516 * T1M);
Chris@10 479 ci[WS(rs, 9)] = T1S + T1R;
Chris@10 480 T1W = T1T - T1Q;
Chris@10 481 cr[WS(rs, 8)] = T1V - T1W;
Chris@10 482 ci[WS(rs, 7)] = T1V + T1W;
Chris@10 483 T1U = T1Q + T1T;
Chris@10 484 cr[WS(rs, 6)] = T1N - T1U;
Chris@10 485 ci[WS(rs, 5)] = T1N + T1U;
Chris@10 486 }
Chris@10 487 }
Chris@10 488 }
Chris@10 489 }
Chris@10 490
Chris@10 491 static const tw_instr twinstr[] = {
Chris@10 492 {TW_FULL, 1, 10},
Chris@10 493 {TW_NEXT, 1, 0}
Chris@10 494 };
Chris@10 495
Chris@10 496 static const hc2hc_desc desc = { 10, "hf_10", twinstr, &GENUS, {72, 30, 30, 0} };
Chris@10 497
Chris@10 498 void X(codelet_hf_10) (planner *p) {
Chris@10 499 X(khc2hc_register) (p, hf_10, &desc);
Chris@10 500 }
Chris@10 501 #endif /* HAVE_FMA */