annotate src/fftw-3.3.3/rdft/scalar/r2cf/hf2_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:02 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hf2_8 -include hf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 74 FP additions, 50 FP multiplications,
Chris@10 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
Chris@10 33 * 64 stack variables, 1 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "hf.h"
Chris@10 36
Chris@10 37 static void hf2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 43 E TS, T1l, TJ, T1m, T1k, Tw, T1w, T1u;
Chris@10 44 {
Chris@10 45 E T2, T3, Tl, Tn, T5, T4, Tm, Tr, T6;
Chris@10 46 T2 = W[0];
Chris@10 47 T3 = W[2];
Chris@10 48 Tl = W[4];
Chris@10 49 Tn = W[5];
Chris@10 50 T5 = W[1];
Chris@10 51 T4 = T2 * T3;
Chris@10 52 Tm = T2 * Tl;
Chris@10 53 Tr = T2 * Tn;
Chris@10 54 T6 = W[3];
Chris@10 55 {
Chris@10 56 E T1, T1s, TG, Td, T1r, Tu, TY, Tk, TW, T18, T1d, TD, TH, TA, T13;
Chris@10 57 E TE, T14;
Chris@10 58 {
Chris@10 59 E To, Ts, Tf, T7, T8, Ti, Tb, T9, Tc, TC, Ta, TF, TB, Tg, Th;
Chris@10 60 E Tj;
Chris@10 61 T1 = cr[0];
Chris@10 62 To = FMA(T5, Tn, Tm);
Chris@10 63 Ts = FNMS(T5, Tl, Tr);
Chris@10 64 Tf = FMA(T5, T6, T4);
Chris@10 65 T7 = FNMS(T5, T6, T4);
Chris@10 66 Ta = T2 * T6;
Chris@10 67 T1s = ci[0];
Chris@10 68 T8 = cr[WS(rs, 4)];
Chris@10 69 TF = Tf * Tn;
Chris@10 70 TB = Tf * Tl;
Chris@10 71 Ti = FNMS(T5, T3, Ta);
Chris@10 72 Tb = FMA(T5, T3, Ta);
Chris@10 73 T9 = T7 * T8;
Chris@10 74 Tc = ci[WS(rs, 4)];
Chris@10 75 TG = FNMS(Ti, Tl, TF);
Chris@10 76 TC = FMA(Ti, Tn, TB);
Chris@10 77 {
Chris@10 78 E Tp, T1q, Tt, Tq, TX;
Chris@10 79 Tp = cr[WS(rs, 6)];
Chris@10 80 Td = FMA(Tb, Tc, T9);
Chris@10 81 T1q = T7 * Tc;
Chris@10 82 Tt = ci[WS(rs, 6)];
Chris@10 83 Tq = To * Tp;
Chris@10 84 Tg = cr[WS(rs, 2)];
Chris@10 85 T1r = FNMS(Tb, T8, T1q);
Chris@10 86 TX = To * Tt;
Chris@10 87 Tu = FMA(Ts, Tt, Tq);
Chris@10 88 Th = Tf * Tg;
Chris@10 89 Tj = ci[WS(rs, 2)];
Chris@10 90 TY = FNMS(Ts, Tp, TX);
Chris@10 91 }
Chris@10 92 {
Chris@10 93 E TO, TQ, TN, TP, T1a, T1b;
Chris@10 94 {
Chris@10 95 E TK, TM, TL, T19, TV;
Chris@10 96 TK = cr[WS(rs, 7)];
Chris@10 97 TM = ci[WS(rs, 7)];
Chris@10 98 Tk = FMA(Ti, Tj, Th);
Chris@10 99 TV = Tf * Tj;
Chris@10 100 TL = Tl * TK;
Chris@10 101 T19 = Tl * TM;
Chris@10 102 TO = cr[WS(rs, 3)];
Chris@10 103 TW = FNMS(Ti, Tg, TV);
Chris@10 104 TQ = ci[WS(rs, 3)];
Chris@10 105 TN = FMA(Tn, TM, TL);
Chris@10 106 TP = T3 * TO;
Chris@10 107 T1a = FNMS(Tn, TK, T19);
Chris@10 108 T1b = T3 * TQ;
Chris@10 109 }
Chris@10 110 {
Chris@10 111 E Tx, Tz, Ty, T12, T1c, TR;
Chris@10 112 Tx = cr[WS(rs, 1)];
Chris@10 113 TR = FMA(T6, TQ, TP);
Chris@10 114 Tz = ci[WS(rs, 1)];
Chris@10 115 T1c = FNMS(T6, TO, T1b);
Chris@10 116 Ty = T2 * Tx;
Chris@10 117 T18 = TN - TR;
Chris@10 118 TS = TN + TR;
Chris@10 119 T12 = T2 * Tz;
Chris@10 120 T1d = T1a - T1c;
Chris@10 121 T1l = T1a + T1c;
Chris@10 122 TD = cr[WS(rs, 5)];
Chris@10 123 TH = ci[WS(rs, 5)];
Chris@10 124 TA = FMA(T5, Tz, Ty);
Chris@10 125 T13 = FNMS(T5, Tx, T12);
Chris@10 126 TE = TC * TD;
Chris@10 127 T14 = TC * TH;
Chris@10 128 }
Chris@10 129 }
Chris@10 130 }
Chris@10 131 {
Chris@10 132 E Te, T1p, Tv, T1t;
Chris@10 133 {
Chris@10 134 E T1g, T10, T1z, T1B, T1C, T1j, T1A, T1f;
Chris@10 135 {
Chris@10 136 E T1x, T11, T16, T1y;
Chris@10 137 {
Chris@10 138 E TU, TZ, TI, T15;
Chris@10 139 Te = T1 + Td;
Chris@10 140 TU = T1 - Td;
Chris@10 141 TZ = TW - TY;
Chris@10 142 T1p = TW + TY;
Chris@10 143 TI = FMA(TG, TH, TE);
Chris@10 144 T15 = FNMS(TG, TD, T14);
Chris@10 145 Tv = Tk + Tu;
Chris@10 146 T1x = Tk - Tu;
Chris@10 147 T1g = TU - TZ;
Chris@10 148 T10 = TU + TZ;
Chris@10 149 T11 = TA - TI;
Chris@10 150 TJ = TA + TI;
Chris@10 151 T1m = T13 + T15;
Chris@10 152 T16 = T13 - T15;
Chris@10 153 T1y = T1s - T1r;
Chris@10 154 T1t = T1r + T1s;
Chris@10 155 }
Chris@10 156 {
Chris@10 157 E T1i, T1e, T17, T1h;
Chris@10 158 T1i = T18 + T1d;
Chris@10 159 T1e = T18 - T1d;
Chris@10 160 T17 = T11 + T16;
Chris@10 161 T1h = T11 - T16;
Chris@10 162 T1z = T1x + T1y;
Chris@10 163 T1B = T1y - T1x;
Chris@10 164 T1C = T1i - T1h;
Chris@10 165 T1j = T1h + T1i;
Chris@10 166 T1A = T1e - T17;
Chris@10 167 T1f = T17 + T1e;
Chris@10 168 }
Chris@10 169 }
Chris@10 170 cr[WS(rs, 3)] = FNMS(KP707106781, T1j, T1g);
Chris@10 171 cr[WS(rs, 7)] = FMS(KP707106781, T1A, T1z);
Chris@10 172 cr[WS(rs, 1)] = FMA(KP707106781, T1f, T10);
Chris@10 173 ci[WS(rs, 2)] = FNMS(KP707106781, T1f, T10);
Chris@10 174 ci[WS(rs, 6)] = FMA(KP707106781, T1C, T1B);
Chris@10 175 cr[WS(rs, 5)] = FMS(KP707106781, T1C, T1B);
Chris@10 176 ci[WS(rs, 4)] = FMA(KP707106781, T1A, T1z);
Chris@10 177 ci[0] = FMA(KP707106781, T1j, T1g);
Chris@10 178 }
Chris@10 179 T1k = Te - Tv;
Chris@10 180 Tw = Te + Tv;
Chris@10 181 T1w = T1t - T1p;
Chris@10 182 T1u = T1p + T1t;
Chris@10 183 }
Chris@10 184 }
Chris@10 185 }
Chris@10 186 {
Chris@10 187 E TT, T1v, T1n, T1o;
Chris@10 188 TT = TJ + TS;
Chris@10 189 T1v = TS - TJ;
Chris@10 190 T1n = T1l - T1m;
Chris@10 191 T1o = T1m + T1l;
Chris@10 192 ci[WS(rs, 5)] = T1v + T1w;
Chris@10 193 cr[WS(rs, 6)] = T1v - T1w;
Chris@10 194 cr[0] = Tw + TT;
Chris@10 195 ci[WS(rs, 3)] = Tw - TT;
Chris@10 196 ci[WS(rs, 7)] = T1o + T1u;
Chris@10 197 cr[WS(rs, 4)] = T1o - T1u;
Chris@10 198 ci[WS(rs, 1)] = T1k + T1n;
Chris@10 199 cr[WS(rs, 2)] = T1k - T1n;
Chris@10 200 }
Chris@10 201 }
Chris@10 202 }
Chris@10 203 }
Chris@10 204
Chris@10 205 static const tw_instr twinstr[] = {
Chris@10 206 {TW_CEXP, 1, 1},
Chris@10 207 {TW_CEXP, 1, 3},
Chris@10 208 {TW_CEXP, 1, 7},
Chris@10 209 {TW_NEXT, 1, 0}
Chris@10 210 };
Chris@10 211
Chris@10 212 static const hc2hc_desc desc = { 8, "hf2_8", twinstr, &GENUS, {44, 20, 30, 0} };
Chris@10 213
Chris@10 214 void X(codelet_hf2_8) (planner *p) {
Chris@10 215 X(khc2hc_register) (p, hf2_8, &desc);
Chris@10 216 }
Chris@10 217 #else /* HAVE_FMA */
Chris@10 218
Chris@10 219 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hf2_8 -include hf.h */
Chris@10 220
Chris@10 221 /*
Chris@10 222 * This function contains 74 FP additions, 44 FP multiplications,
Chris@10 223 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
Chris@10 224 * 42 stack variables, 1 constants, and 32 memory accesses
Chris@10 225 */
Chris@10 226 #include "hf.h"
Chris@10 227
Chris@10 228 static void hf2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 229 {
Chris@10 230 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 231 {
Chris@10 232 INT m;
Chris@10 233 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 234 E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
Chris@10 235 {
Chris@10 236 E T4, Tb, T7, Ta;
Chris@10 237 T2 = W[0];
Chris@10 238 T5 = W[1];
Chris@10 239 T3 = W[2];
Chris@10 240 T6 = W[3];
Chris@10 241 T4 = T2 * T3;
Chris@10 242 Tb = T5 * T3;
Chris@10 243 T7 = T5 * T6;
Chris@10 244 Ta = T2 * T6;
Chris@10 245 T8 = T4 - T7;
Chris@10 246 Tc = Ta + Tb;
Chris@10 247 Tg = T4 + T7;
Chris@10 248 Ti = Ta - Tb;
Chris@10 249 Tl = W[4];
Chris@10 250 Tm = W[5];
Chris@10 251 Tn = FMA(T2, Tl, T5 * Tm);
Chris@10 252 Tz = FNMS(Ti, Tl, Tg * Tm);
Chris@10 253 Tp = FNMS(T5, Tl, T2 * Tm);
Chris@10 254 Tx = FMA(Tg, Tl, Ti * Tm);
Chris@10 255 }
Chris@10 256 {
Chris@10 257 E Tf, T1j, TL, T1d, TJ, T16, TV, TY, Ts, T1i, TO, T1a, TC, T17, TQ;
Chris@10 258 E TT;
Chris@10 259 {
Chris@10 260 E T1, T1c, Te, T1b, T9, Td;
Chris@10 261 T1 = cr[0];
Chris@10 262 T1c = ci[0];
Chris@10 263 T9 = cr[WS(rs, 4)];
Chris@10 264 Td = ci[WS(rs, 4)];
Chris@10 265 Te = FMA(T8, T9, Tc * Td);
Chris@10 266 T1b = FNMS(Tc, T9, T8 * Td);
Chris@10 267 Tf = T1 + Te;
Chris@10 268 T1j = T1c - T1b;
Chris@10 269 TL = T1 - Te;
Chris@10 270 T1d = T1b + T1c;
Chris@10 271 }
Chris@10 272 {
Chris@10 273 E TF, TW, TI, TX;
Chris@10 274 {
Chris@10 275 E TD, TE, TG, TH;
Chris@10 276 TD = cr[WS(rs, 7)];
Chris@10 277 TE = ci[WS(rs, 7)];
Chris@10 278 TF = FMA(Tl, TD, Tm * TE);
Chris@10 279 TW = FNMS(Tm, TD, Tl * TE);
Chris@10 280 TG = cr[WS(rs, 3)];
Chris@10 281 TH = ci[WS(rs, 3)];
Chris@10 282 TI = FMA(T3, TG, T6 * TH);
Chris@10 283 TX = FNMS(T6, TG, T3 * TH);
Chris@10 284 }
Chris@10 285 TJ = TF + TI;
Chris@10 286 T16 = TW + TX;
Chris@10 287 TV = TF - TI;
Chris@10 288 TY = TW - TX;
Chris@10 289 }
Chris@10 290 {
Chris@10 291 E Tk, TM, Tr, TN;
Chris@10 292 {
Chris@10 293 E Th, Tj, To, Tq;
Chris@10 294 Th = cr[WS(rs, 2)];
Chris@10 295 Tj = ci[WS(rs, 2)];
Chris@10 296 Tk = FMA(Tg, Th, Ti * Tj);
Chris@10 297 TM = FNMS(Ti, Th, Tg * Tj);
Chris@10 298 To = cr[WS(rs, 6)];
Chris@10 299 Tq = ci[WS(rs, 6)];
Chris@10 300 Tr = FMA(Tn, To, Tp * Tq);
Chris@10 301 TN = FNMS(Tp, To, Tn * Tq);
Chris@10 302 }
Chris@10 303 Ts = Tk + Tr;
Chris@10 304 T1i = Tk - Tr;
Chris@10 305 TO = TM - TN;
Chris@10 306 T1a = TM + TN;
Chris@10 307 }
Chris@10 308 {
Chris@10 309 E Tw, TR, TB, TS;
Chris@10 310 {
Chris@10 311 E Tu, Tv, Ty, TA;
Chris@10 312 Tu = cr[WS(rs, 1)];
Chris@10 313 Tv = ci[WS(rs, 1)];
Chris@10 314 Tw = FMA(T2, Tu, T5 * Tv);
Chris@10 315 TR = FNMS(T5, Tu, T2 * Tv);
Chris@10 316 Ty = cr[WS(rs, 5)];
Chris@10 317 TA = ci[WS(rs, 5)];
Chris@10 318 TB = FMA(Tx, Ty, Tz * TA);
Chris@10 319 TS = FNMS(Tz, Ty, Tx * TA);
Chris@10 320 }
Chris@10 321 TC = Tw + TB;
Chris@10 322 T17 = TR + TS;
Chris@10 323 TQ = Tw - TB;
Chris@10 324 TT = TR - TS;
Chris@10 325 }
Chris@10 326 {
Chris@10 327 E Tt, TK, T1f, T1g;
Chris@10 328 Tt = Tf + Ts;
Chris@10 329 TK = TC + TJ;
Chris@10 330 ci[WS(rs, 3)] = Tt - TK;
Chris@10 331 cr[0] = Tt + TK;
Chris@10 332 T1f = TJ - TC;
Chris@10 333 T1g = T1d - T1a;
Chris@10 334 cr[WS(rs, 6)] = T1f - T1g;
Chris@10 335 ci[WS(rs, 5)] = T1f + T1g;
Chris@10 336 {
Chris@10 337 E T11, T1m, T14, T1l, T12, T13;
Chris@10 338 T11 = TL - TO;
Chris@10 339 T1m = T1j - T1i;
Chris@10 340 T12 = TQ - TT;
Chris@10 341 T13 = TV + TY;
Chris@10 342 T14 = KP707106781 * (T12 + T13);
Chris@10 343 T1l = KP707106781 * (T13 - T12);
Chris@10 344 cr[WS(rs, 3)] = T11 - T14;
Chris@10 345 ci[WS(rs, 6)] = T1l + T1m;
Chris@10 346 ci[0] = T11 + T14;
Chris@10 347 cr[WS(rs, 5)] = T1l - T1m;
Chris@10 348 }
Chris@10 349 }
Chris@10 350 {
Chris@10 351 E T19, T1e, T15, T18;
Chris@10 352 T19 = T17 + T16;
Chris@10 353 T1e = T1a + T1d;
Chris@10 354 cr[WS(rs, 4)] = T19 - T1e;
Chris@10 355 ci[WS(rs, 7)] = T19 + T1e;
Chris@10 356 T15 = Tf - Ts;
Chris@10 357 T18 = T16 - T17;
Chris@10 358 cr[WS(rs, 2)] = T15 - T18;
Chris@10 359 ci[WS(rs, 1)] = T15 + T18;
Chris@10 360 {
Chris@10 361 E TP, T1k, T10, T1h, TU, TZ;
Chris@10 362 TP = TL + TO;
Chris@10 363 T1k = T1i + T1j;
Chris@10 364 TU = TQ + TT;
Chris@10 365 TZ = TV - TY;
Chris@10 366 T10 = KP707106781 * (TU + TZ);
Chris@10 367 T1h = KP707106781 * (TZ - TU);
Chris@10 368 ci[WS(rs, 2)] = TP - T10;
Chris@10 369 ci[WS(rs, 4)] = T1h + T1k;
Chris@10 370 cr[WS(rs, 1)] = TP + T10;
Chris@10 371 cr[WS(rs, 7)] = T1h - T1k;
Chris@10 372 }
Chris@10 373 }
Chris@10 374 }
Chris@10 375 }
Chris@10 376 }
Chris@10 377 }
Chris@10 378
Chris@10 379 static const tw_instr twinstr[] = {
Chris@10 380 {TW_CEXP, 1, 1},
Chris@10 381 {TW_CEXP, 1, 3},
Chris@10 382 {TW_CEXP, 1, 7},
Chris@10 383 {TW_NEXT, 1, 0}
Chris@10 384 };
Chris@10 385
Chris@10 386 static const hc2hc_desc desc = { 8, "hf2_8", twinstr, &GENUS, {56, 26, 18, 0} };
Chris@10 387
Chris@10 388 void X(codelet_hf2_8) (planner *p) {
Chris@10 389 X(khc2hc_register) (p, hf2_8, &desc);
Chris@10 390 }
Chris@10 391 #endif /* HAVE_FMA */