annotate src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:44 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include hc2cf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 82 FP additions, 52 FP multiplications,
Chris@10 32 * (or, 60 additions, 30 multiplications, 22 fused multiply/add),
Chris@10 33 * 55 stack variables, 2 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cf.h"
Chris@10 36
Chris@10 37 static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 44 E T1A, T1w, T1z, T1x, T1H, T1v, T1L, T1F;
Chris@10 45 {
Chris@10 46 E Ty, T14, TO, T1o, Tv, TG, T16, T1m, Ta, T19, T1h, TV, T10, TX, TZ;
Chris@10 47 E Tk, T1i, TY, T1b, TF, TB, T1l;
Chris@10 48 {
Chris@10 49 E TH, TN, TK, TM;
Chris@10 50 {
Chris@10 51 E Tw, Tx, TI, TJ;
Chris@10 52 Tw = Ip[0];
Chris@10 53 Tx = Im[0];
Chris@10 54 TI = Rm[0];
Chris@10 55 TJ = Rp[0];
Chris@10 56 TH = W[0];
Chris@10 57 Ty = Tw - Tx;
Chris@10 58 TN = Tw + Tx;
Chris@10 59 T14 = TJ + TI;
Chris@10 60 TK = TI - TJ;
Chris@10 61 TM = W[1];
Chris@10 62 }
Chris@10 63 {
Chris@10 64 E Ts, Tp, Tt, Tm, Tr;
Chris@10 65 {
Chris@10 66 E Tn, To, TL, T1n;
Chris@10 67 Tn = Ip[WS(rs, 2)];
Chris@10 68 To = Im[WS(rs, 2)];
Chris@10 69 TL = TH * TK;
Chris@10 70 T1n = TM * TK;
Chris@10 71 Ts = Rp[WS(rs, 2)];
Chris@10 72 TF = Tn + To;
Chris@10 73 Tp = Tn - To;
Chris@10 74 TO = FNMS(TM, TN, TL);
Chris@10 75 T1o = FMA(TH, TN, T1n);
Chris@10 76 Tt = Rm[WS(rs, 2)];
Chris@10 77 }
Chris@10 78 Tm = W[6];
Chris@10 79 Tr = W[7];
Chris@10 80 {
Chris@10 81 E TE, TD, T15, TC, Tu, Tq;
Chris@10 82 TB = W[8];
Chris@10 83 TC = Tt - Ts;
Chris@10 84 Tu = Ts + Tt;
Chris@10 85 Tq = Tm * Tp;
Chris@10 86 TE = W[9];
Chris@10 87 TD = TB * TC;
Chris@10 88 T15 = Tm * Tu;
Chris@10 89 Tv = FNMS(Tr, Tu, Tq);
Chris@10 90 T1l = TE * TC;
Chris@10 91 TG = FNMS(TE, TF, TD);
Chris@10 92 T16 = FMA(Tr, Tp, T15);
Chris@10 93 }
Chris@10 94 }
Chris@10 95 }
Chris@10 96 {
Chris@10 97 E TU, TR, TT, T1g, TS;
Chris@10 98 {
Chris@10 99 E T2, T3, T7, T8;
Chris@10 100 T2 = Ip[WS(rs, 1)];
Chris@10 101 T1m = FMA(TB, TF, T1l);
Chris@10 102 T3 = Im[WS(rs, 1)];
Chris@10 103 T7 = Rp[WS(rs, 1)];
Chris@10 104 T8 = Rm[WS(rs, 1)];
Chris@10 105 {
Chris@10 106 E T1, T4, T9, T6, T5, TQ, T18;
Chris@10 107 T1 = W[2];
Chris@10 108 TU = T2 + T3;
Chris@10 109 T4 = T2 - T3;
Chris@10 110 TR = T7 - T8;
Chris@10 111 T9 = T7 + T8;
Chris@10 112 T6 = W[3];
Chris@10 113 T5 = T1 * T4;
Chris@10 114 TQ = W[4];
Chris@10 115 T18 = T1 * T9;
Chris@10 116 TT = W[5];
Chris@10 117 Ta = FNMS(T6, T9, T5);
Chris@10 118 T1g = TQ * TU;
Chris@10 119 TS = TQ * TR;
Chris@10 120 T19 = FMA(T6, T4, T18);
Chris@10 121 }
Chris@10 122 }
Chris@10 123 {
Chris@10 124 E Tc, Td, Th, Ti;
Chris@10 125 Tc = Ip[WS(rs, 3)];
Chris@10 126 T1h = FNMS(TT, TR, T1g);
Chris@10 127 TV = FMA(TT, TU, TS);
Chris@10 128 Td = Im[WS(rs, 3)];
Chris@10 129 Th = Rp[WS(rs, 3)];
Chris@10 130 Ti = Rm[WS(rs, 3)];
Chris@10 131 {
Chris@10 132 E Tb, Te, Tj, Tg, Tf, TW, T1a;
Chris@10 133 Tb = W[10];
Chris@10 134 T10 = Tc + Td;
Chris@10 135 Te = Tc - Td;
Chris@10 136 TX = Th - Ti;
Chris@10 137 Tj = Th + Ti;
Chris@10 138 Tg = W[11];
Chris@10 139 Tf = Tb * Te;
Chris@10 140 TW = W[12];
Chris@10 141 T1a = Tb * Tj;
Chris@10 142 TZ = W[13];
Chris@10 143 Tk = FNMS(Tg, Tj, Tf);
Chris@10 144 T1i = TW * T10;
Chris@10 145 TY = TW * TX;
Chris@10 146 T1b = FMA(Tg, Te, T1a);
Chris@10 147 }
Chris@10 148 }
Chris@10 149 }
Chris@10 150 {
Chris@10 151 E T1E, T1t, TA, T1s, T1D, T1u, T1e, T13, T1r, T1d;
Chris@10 152 {
Chris@10 153 E TP, T1f, T1q, T12, T17, T1c;
Chris@10 154 {
Chris@10 155 E Tl, T11, Tz, T1p, T1k, T1j;
Chris@10 156 T1E = Ta - Tk;
Chris@10 157 Tl = Ta + Tk;
Chris@10 158 T1j = FNMS(TZ, TX, T1i);
Chris@10 159 T11 = FMA(TZ, T10, TY);
Chris@10 160 Tz = Tv + Ty;
Chris@10 161 T1t = Ty - Tv;
Chris@10 162 T1A = T1o - T1m;
Chris@10 163 T1p = T1m + T1o;
Chris@10 164 T1k = T1h + T1j;
Chris@10 165 T1w = T1j - T1h;
Chris@10 166 T1z = TO - TG;
Chris@10 167 TP = TG + TO;
Chris@10 168 T1f = Tz - Tl;
Chris@10 169 TA = Tl + Tz;
Chris@10 170 T1s = T1k + T1p;
Chris@10 171 T1q = T1k - T1p;
Chris@10 172 T12 = TV + T11;
Chris@10 173 T1x = TV - T11;
Chris@10 174 T1D = T14 - T16;
Chris@10 175 T17 = T14 + T16;
Chris@10 176 T1c = T19 + T1b;
Chris@10 177 T1u = T19 - T1b;
Chris@10 178 }
Chris@10 179 Im[WS(rs, 1)] = KP500000000 * (T1q - T1f);
Chris@10 180 T1e = T12 + TP;
Chris@10 181 T13 = TP - T12;
Chris@10 182 T1r = T17 + T1c;
Chris@10 183 T1d = T17 - T1c;
Chris@10 184 Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q);
Chris@10 185 }
Chris@10 186 Im[WS(rs, 3)] = KP500000000 * (T13 - TA);
Chris@10 187 Ip[0] = KP500000000 * (TA + T13);
Chris@10 188 Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s);
Chris@10 189 Rp[0] = KP500000000 * (T1r + T1s);
Chris@10 190 Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e);
Chris@10 191 Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e);
Chris@10 192 T1H = T1u + T1t;
Chris@10 193 T1v = T1t - T1u;
Chris@10 194 T1L = T1D + T1E;
Chris@10 195 T1F = T1D - T1E;
Chris@10 196 }
Chris@10 197 }
Chris@10 198 {
Chris@10 199 E T1y, T1I, T1B, T1J;
Chris@10 200 T1y = T1w + T1x;
Chris@10 201 T1I = T1w - T1x;
Chris@10 202 T1B = T1z - T1A;
Chris@10 203 T1J = T1z + T1A;
Chris@10 204 {
Chris@10 205 E T1M, T1K, T1C, T1G;
Chris@10 206 T1M = T1I + T1J;
Chris@10 207 T1K = T1I - T1J;
Chris@10 208 T1C = T1y + T1B;
Chris@10 209 T1G = T1B - T1y;
Chris@10 210 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H)));
Chris@10 211 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H));
Chris@10 212 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
Chris@10 213 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
Chris@10 214 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F));
Chris@10 215 Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F));
Chris@10 216 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v)));
Chris@10 217 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v));
Chris@10 218 }
Chris@10 219 }
Chris@10 220 }
Chris@10 221 }
Chris@10 222 }
Chris@10 223
Chris@10 224 static const tw_instr twinstr[] = {
Chris@10 225 {TW_FULL, 1, 8},
Chris@10 226 {TW_NEXT, 1, 0}
Chris@10 227 };
Chris@10 228
Chris@10 229 static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {60, 30, 22, 0} };
Chris@10 230
Chris@10 231 void X(codelet_hc2cfdft_8) (planner *p) {
Chris@10 232 X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
Chris@10 233 }
Chris@10 234 #else /* HAVE_FMA */
Chris@10 235
Chris@10 236 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include hc2cf.h */
Chris@10 237
Chris@10 238 /*
Chris@10 239 * This function contains 82 FP additions, 44 FP multiplications,
Chris@10 240 * (or, 68 additions, 30 multiplications, 14 fused multiply/add),
Chris@10 241 * 39 stack variables, 2 constants, and 32 memory accesses
Chris@10 242 */
Chris@10 243 #include "hc2cf.h"
Chris@10 244
Chris@10 245 static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 246 {
Chris@10 247 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@10 248 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 249 {
Chris@10 250 INT m;
Chris@10 251 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 252 E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP;
Chris@10 253 E T16, TU, T17, T1i, T1j;
Chris@10 254 {
Chris@10 255 E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To;
Chris@10 256 Tt = Ip[0];
Chris@10 257 Tu = Im[0];
Chris@10 258 TD = Tt + Tu;
Chris@10 259 Tz = Rm[0];
Chris@10 260 TA = Rp[0];
Chris@10 261 TB = Tz - TA;
Chris@10 262 {
Chris@10 263 E Tl, Tm, Tp, Tq;
Chris@10 264 Tl = Ip[WS(rs, 2)];
Chris@10 265 Tm = Im[WS(rs, 2)];
Chris@10 266 Tn = Tl - Tm;
Chris@10 267 TI = Tl + Tm;
Chris@10 268 Tp = Rp[WS(rs, 2)];
Chris@10 269 Tq = Rm[WS(rs, 2)];
Chris@10 270 Tr = Tp + Tq;
Chris@10 271 TG = Tp - Tq;
Chris@10 272 }
Chris@10 273 Tv = Tt - Tu;
Chris@10 274 TX = TA + Tz;
Chris@10 275 Tk = W[6];
Chris@10 276 To = W[7];
Chris@10 277 Ts = FNMS(To, Tr, Tk * Tn);
Chris@10 278 TY = FMA(Tk, Tr, To * Tn);
Chris@10 279 {
Chris@10 280 E Ty, TC, TF, TH;
Chris@10 281 Ty = W[0];
Chris@10 282 TC = W[1];
Chris@10 283 TE = FNMS(TC, TD, Ty * TB);
Chris@10 284 T1a = FMA(TC, TB, Ty * TD);
Chris@10 285 TF = W[8];
Chris@10 286 TH = W[9];
Chris@10 287 TJ = FMA(TF, TG, TH * TI);
Chris@10 288 T19 = FNMS(TH, TG, TF * TI);
Chris@10 289 }
Chris@10 290 T1l = TJ + TE;
Chris@10 291 T1m = T1a - T19;
Chris@10 292 }
Chris@10 293 {
Chris@10 294 E T4, TO, T8, TM, Td, TT, Th, TR;
Chris@10 295 {
Chris@10 296 E T2, T3, T6, T7;
Chris@10 297 T2 = Ip[WS(rs, 1)];
Chris@10 298 T3 = Im[WS(rs, 1)];
Chris@10 299 T4 = T2 - T3;
Chris@10 300 TO = T2 + T3;
Chris@10 301 T6 = Rp[WS(rs, 1)];
Chris@10 302 T7 = Rm[WS(rs, 1)];
Chris@10 303 T8 = T6 + T7;
Chris@10 304 TM = T6 - T7;
Chris@10 305 }
Chris@10 306 {
Chris@10 307 E Tb, Tc, Tf, Tg;
Chris@10 308 Tb = Ip[WS(rs, 3)];
Chris@10 309 Tc = Im[WS(rs, 3)];
Chris@10 310 Td = Tb - Tc;
Chris@10 311 TT = Tb + Tc;
Chris@10 312 Tf = Rp[WS(rs, 3)];
Chris@10 313 Tg = Rm[WS(rs, 3)];
Chris@10 314 Th = Tf + Tg;
Chris@10 315 TR = Tf - Tg;
Chris@10 316 }
Chris@10 317 {
Chris@10 318 E T1, T5, Ta, Te;
Chris@10 319 T1 = W[2];
Chris@10 320 T5 = W[3];
Chris@10 321 T9 = FNMS(T5, T8, T1 * T4);
Chris@10 322 T10 = FMA(T1, T8, T5 * T4);
Chris@10 323 Ta = W[10];
Chris@10 324 Te = W[11];
Chris@10 325 Ti = FNMS(Te, Th, Ta * Td);
Chris@10 326 T11 = FMA(Ta, Th, Te * Td);
Chris@10 327 {
Chris@10 328 E TL, TN, TQ, TS;
Chris@10 329 TL = W[4];
Chris@10 330 TN = W[5];
Chris@10 331 TP = FMA(TL, TM, TN * TO);
Chris@10 332 T16 = FNMS(TN, TM, TL * TO);
Chris@10 333 TQ = W[12];
Chris@10 334 TS = W[13];
Chris@10 335 TU = FMA(TQ, TR, TS * TT);
Chris@10 336 T17 = FNMS(TS, TR, TQ * TT);
Chris@10 337 }
Chris@10 338 T1i = T17 - T16;
Chris@10 339 T1j = TP - TU;
Chris@10 340 }
Chris@10 341 }
Chris@10 342 {
Chris@10 343 E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x;
Chris@10 344 {
Chris@10 345 E T1f, T1g, T1u, T1v;
Chris@10 346 T1f = Tv - Ts;
Chris@10 347 T1g = T10 - T11;
Chris@10 348 T1h = KP500000000 * (T1f - T1g);
Chris@10 349 T1t = KP500000000 * (T1g + T1f);
Chris@10 350 T1u = T1i - T1j;
Chris@10 351 T1v = T1l + T1m;
Chris@10 352 T1w = KP353553390 * (T1u - T1v);
Chris@10 353 T1y = KP353553390 * (T1u + T1v);
Chris@10 354 }
Chris@10 355 {
Chris@10 356 E T1k, T1n, T1p, T1q;
Chris@10 357 T1k = T1i + T1j;
Chris@10 358 T1n = T1l - T1m;
Chris@10 359 T1o = KP353553390 * (T1k + T1n);
Chris@10 360 T1s = KP353553390 * (T1n - T1k);
Chris@10 361 T1p = TX - TY;
Chris@10 362 T1q = T9 - Ti;
Chris@10 363 T1r = KP500000000 * (T1p - T1q);
Chris@10 364 T1x = KP500000000 * (T1p + T1q);
Chris@10 365 }
Chris@10 366 Ip[WS(rs, 1)] = T1h + T1o;
Chris@10 367 Rp[WS(rs, 1)] = T1x + T1y;
Chris@10 368 Im[WS(rs, 2)] = T1o - T1h;
Chris@10 369 Rm[WS(rs, 2)] = T1x - T1y;
Chris@10 370 Rm[0] = T1r - T1s;
Chris@10 371 Im[0] = T1w - T1t;
Chris@10 372 Rp[WS(rs, 3)] = T1r + T1s;
Chris@10 373 Ip[WS(rs, 3)] = T1t + T1w;
Chris@10 374 }
Chris@10 375 {
Chris@10 376 E Tx, T15, T1c, T1e, TW, T14, T13, T1d;
Chris@10 377 {
Chris@10 378 E Tj, Tw, T18, T1b;
Chris@10 379 Tj = T9 + Ti;
Chris@10 380 Tw = Ts + Tv;
Chris@10 381 Tx = Tj + Tw;
Chris@10 382 T15 = Tw - Tj;
Chris@10 383 T18 = T16 + T17;
Chris@10 384 T1b = T19 + T1a;
Chris@10 385 T1c = T18 - T1b;
Chris@10 386 T1e = T18 + T1b;
Chris@10 387 }
Chris@10 388 {
Chris@10 389 E TK, TV, TZ, T12;
Chris@10 390 TK = TE - TJ;
Chris@10 391 TV = TP + TU;
Chris@10 392 TW = TK - TV;
Chris@10 393 T14 = TV + TK;
Chris@10 394 TZ = TX + TY;
Chris@10 395 T12 = T10 + T11;
Chris@10 396 T13 = TZ - T12;
Chris@10 397 T1d = TZ + T12;
Chris@10 398 }
Chris@10 399 Ip[0] = KP500000000 * (Tx + TW);
Chris@10 400 Rp[0] = KP500000000 * (T1d + T1e);
Chris@10 401 Im[WS(rs, 3)] = KP500000000 * (TW - Tx);
Chris@10 402 Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e);
Chris@10 403 Rm[WS(rs, 1)] = KP500000000 * (T13 - T14);
Chris@10 404 Im[WS(rs, 1)] = KP500000000 * (T1c - T15);
Chris@10 405 Rp[WS(rs, 2)] = KP500000000 * (T13 + T14);
Chris@10 406 Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c);
Chris@10 407 }
Chris@10 408 }
Chris@10 409 }
Chris@10 410 }
Chris@10 411
Chris@10 412 static const tw_instr twinstr[] = {
Chris@10 413 {TW_FULL, 1, 8},
Chris@10 414 {TW_NEXT, 1, 0}
Chris@10 415 };
Chris@10 416
Chris@10 417 static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {68, 30, 14, 0} };
Chris@10 418
Chris@10 419 void X(codelet_hc2cfdft_8) (planner *p) {
Chris@10 420 X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
Chris@10 421 }
Chris@10 422 #endif /* HAVE_FMA */