annotate src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_6.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:44 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include hc2cf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 58 FP additions, 44 FP multiplications,
Chris@10 32 * (or, 36 additions, 22 multiplications, 22 fused multiply/add),
Chris@10 33 * 42 stack variables, 2 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cf.h"
Chris@10 36
Chris@10 37 static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 44 E TP, TT, TN, TM, TY, T13;
Chris@10 45 {
Chris@10 46 E T3, TQ, TJ, T12, Tu, TB, TX, T10, Tj, Tf, Ti, Td, Th, TU, TS;
Chris@10 47 {
Chris@10 48 E TC, TI, TF, TH, TA, Tw, TZ;
Chris@10 49 {
Chris@10 50 E T1, T2, TD, TE;
Chris@10 51 T1 = Ip[0];
Chris@10 52 T2 = Im[0];
Chris@10 53 TD = Rm[0];
Chris@10 54 TE = Rp[0];
Chris@10 55 TC = W[0];
Chris@10 56 T3 = T1 - T2;
Chris@10 57 TI = T1 + T2;
Chris@10 58 TQ = TE + TD;
Chris@10 59 TF = TD - TE;
Chris@10 60 TH = W[1];
Chris@10 61 }
Chris@10 62 {
Chris@10 63 E Tr, To, Ts, Tl, Tq;
Chris@10 64 {
Chris@10 65 E Tm, Tn, TG, T11;
Chris@10 66 Tm = Rm[WS(rs, 2)];
Chris@10 67 Tn = Rp[WS(rs, 2)];
Chris@10 68 TG = TC * TF;
Chris@10 69 T11 = TH * TF;
Chris@10 70 Tr = Ip[WS(rs, 2)];
Chris@10 71 TA = Tn + Tm;
Chris@10 72 To = Tm - Tn;
Chris@10 73 TJ = FNMS(TH, TI, TG);
Chris@10 74 T12 = FMA(TC, TI, T11);
Chris@10 75 Ts = Im[WS(rs, 2)];
Chris@10 76 }
Chris@10 77 Tl = W[8];
Chris@10 78 Tq = W[9];
Chris@10 79 {
Chris@10 80 E Tz, Ty, TW, Tx, Tt, Tp;
Chris@10 81 Tw = W[6];
Chris@10 82 Tx = Tr - Ts;
Chris@10 83 Tt = Tr + Ts;
Chris@10 84 Tp = Tl * To;
Chris@10 85 Tz = W[7];
Chris@10 86 Ty = Tw * Tx;
Chris@10 87 TW = Tl * Tt;
Chris@10 88 Tu = FNMS(Tq, Tt, Tp);
Chris@10 89 TZ = Tz * Tx;
Chris@10 90 TB = FNMS(Tz, TA, Ty);
Chris@10 91 TX = FMA(Tq, To, TW);
Chris@10 92 }
Chris@10 93 }
Chris@10 94 {
Chris@10 95 E T5, T6, Ta, Tb;
Chris@10 96 T5 = Ip[WS(rs, 1)];
Chris@10 97 T10 = FMA(Tw, TA, TZ);
Chris@10 98 T6 = Im[WS(rs, 1)];
Chris@10 99 Ta = Rp[WS(rs, 1)];
Chris@10 100 Tb = Rm[WS(rs, 1)];
Chris@10 101 {
Chris@10 102 E T4, Tg, T7, Tc, T9, T8, TR;
Chris@10 103 T4 = W[5];
Chris@10 104 Tg = T5 - T6;
Chris@10 105 T7 = T5 + T6;
Chris@10 106 Tj = Ta + Tb;
Chris@10 107 Tc = Ta - Tb;
Chris@10 108 T9 = W[4];
Chris@10 109 T8 = T4 * T7;
Chris@10 110 Tf = W[2];
Chris@10 111 Ti = W[3];
Chris@10 112 TR = T9 * T7;
Chris@10 113 Td = FMA(T9, Tc, T8);
Chris@10 114 Th = Tf * Tg;
Chris@10 115 TU = Ti * Tg;
Chris@10 116 TS = FNMS(T4, Tc, TR);
Chris@10 117 }
Chris@10 118 }
Chris@10 119 }
Chris@10 120 {
Chris@10 121 E Te, T1d, TK, Tv, T1a, T1b, Tk, TV;
Chris@10 122 TP = Td + T3;
Chris@10 123 Te = T3 - Td;
Chris@10 124 Tk = FNMS(Ti, Tj, Th);
Chris@10 125 TV = FMA(Tf, Tj, TU);
Chris@10 126 T1d = TQ + TS;
Chris@10 127 TT = TQ - TS;
Chris@10 128 TN = TJ - TB;
Chris@10 129 TK = TB + TJ;
Chris@10 130 Tv = Tk + Tu;
Chris@10 131 TM = Tu - Tk;
Chris@10 132 TY = TV - TX;
Chris@10 133 T1a = TV + TX;
Chris@10 134 T1b = T10 + T12;
Chris@10 135 T13 = T10 - T12;
Chris@10 136 {
Chris@10 137 E T1g, TL, T1e, T1c, T19, T1f;
Chris@10 138 T1g = Tv - TK;
Chris@10 139 TL = Tv + TK;
Chris@10 140 T1e = T1a + T1b;
Chris@10 141 T1c = T1a - T1b;
Chris@10 142 T19 = FNMS(KP500000000, TL, Te);
Chris@10 143 Ip[0] = KP500000000 * (Te + TL);
Chris@10 144 T1f = FNMS(KP500000000, T1e, T1d);
Chris@10 145 Rp[0] = KP500000000 * (T1d + T1e);
Chris@10 146 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP866025403, T1c, T19)));
Chris@10 147 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP866025403, T1c, T19));
Chris@10 148 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T1g, T1f));
Chris@10 149 Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP866025403, T1g, T1f));
Chris@10 150 }
Chris@10 151 }
Chris@10 152 }
Chris@10 153 {
Chris@10 154 E TO, T16, T14, T18, T17, T15;
Chris@10 155 TO = TM + TN;
Chris@10 156 T16 = TN - TM;
Chris@10 157 T14 = TY + T13;
Chris@10 158 T18 = T13 - TY;
Chris@10 159 T17 = FMA(KP500000000, TO, TP);
Chris@10 160 Im[WS(rs, 2)] = KP500000000 * (TO - TP);
Chris@10 161 T15 = FNMS(KP500000000, T14, TT);
Chris@10 162 Rm[WS(rs, 2)] = KP500000000 * (TT + T14);
Chris@10 163 Im[0] = -(KP500000000 * (FNMS(KP866025403, T18, T17)));
Chris@10 164 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T18, T17));
Chris@10 165 Rm[0] = KP500000000 * (FNMS(KP866025403, T16, T15));
Chris@10 166 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T16, T15));
Chris@10 167 }
Chris@10 168 }
Chris@10 169 }
Chris@10 170 }
Chris@10 171
Chris@10 172 static const tw_instr twinstr[] = {
Chris@10 173 {TW_FULL, 1, 6},
Chris@10 174 {TW_NEXT, 1, 0}
Chris@10 175 };
Chris@10 176
Chris@10 177 static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, {36, 22, 22, 0} };
Chris@10 178
Chris@10 179 void X(codelet_hc2cfdft_6) (planner *p) {
Chris@10 180 X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
Chris@10 181 }
Chris@10 182 #else /* HAVE_FMA */
Chris@10 183
Chris@10 184 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include hc2cf.h */
Chris@10 185
Chris@10 186 /*
Chris@10 187 * This function contains 58 FP additions, 36 FP multiplications,
Chris@10 188 * (or, 44 additions, 22 multiplications, 14 fused multiply/add),
Chris@10 189 * 40 stack variables, 3 constants, and 24 memory accesses
Chris@10 190 */
Chris@10 191 #include "hc2cf.h"
Chris@10 192
Chris@10 193 static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 194 {
Chris@10 195 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 196 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 197 DK(KP433012701, +0.433012701892219323381861585376468091735701313);
Chris@10 198 {
Chris@10 199 INT m;
Chris@10 200 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 201 E T3, TM, Tc, TN, Ts, T10, TI, TR, TF, T11, TH, TU;
Chris@10 202 {
Chris@10 203 E T1, T2, TD, Tz, TA, TB, T7, Tf, Tb, Th, Tq, Tw, Tm, Tu, T4;
Chris@10 204 E T8;
Chris@10 205 {
Chris@10 206 E T5, T6, T9, Ta;
Chris@10 207 T1 = Ip[0];
Chris@10 208 T2 = Im[0];
Chris@10 209 TD = T1 + T2;
Chris@10 210 Tz = Rm[0];
Chris@10 211 TA = Rp[0];
Chris@10 212 TB = Tz - TA;
Chris@10 213 T5 = Ip[WS(rs, 1)];
Chris@10 214 T6 = Im[WS(rs, 1)];
Chris@10 215 T7 = T5 + T6;
Chris@10 216 Tf = T5 - T6;
Chris@10 217 T9 = Rp[WS(rs, 1)];
Chris@10 218 Ta = Rm[WS(rs, 1)];
Chris@10 219 Tb = T9 - Ta;
Chris@10 220 Th = T9 + Ta;
Chris@10 221 {
Chris@10 222 E To, Tp, Tk, Tl;
Chris@10 223 To = Rp[WS(rs, 2)];
Chris@10 224 Tp = Rm[WS(rs, 2)];
Chris@10 225 Tq = To - Tp;
Chris@10 226 Tw = To + Tp;
Chris@10 227 Tk = Ip[WS(rs, 2)];
Chris@10 228 Tl = Im[WS(rs, 2)];
Chris@10 229 Tm = Tk + Tl;
Chris@10 230 Tu = Tk - Tl;
Chris@10 231 }
Chris@10 232 }
Chris@10 233 T3 = T1 - T2;
Chris@10 234 TM = TA + Tz;
Chris@10 235 T4 = W[5];
Chris@10 236 T8 = W[4];
Chris@10 237 Tc = FMA(T4, T7, T8 * Tb);
Chris@10 238 TN = FNMS(T4, Tb, T8 * T7);
Chris@10 239 {
Chris@10 240 E Ti, TP, Tr, TQ;
Chris@10 241 {
Chris@10 242 E Te, Tg, Tj, Tn;
Chris@10 243 Te = W[2];
Chris@10 244 Tg = W[3];
Chris@10 245 Ti = FNMS(Tg, Th, Te * Tf);
Chris@10 246 TP = FMA(Tg, Tf, Te * Th);
Chris@10 247 Tj = W[9];
Chris@10 248 Tn = W[8];
Chris@10 249 Tr = FMA(Tj, Tm, Tn * Tq);
Chris@10 250 TQ = FNMS(Tj, Tq, Tn * Tm);
Chris@10 251 }
Chris@10 252 Ts = Ti - Tr;
Chris@10 253 T10 = TP + TQ;
Chris@10 254 TI = Ti + Tr;
Chris@10 255 TR = TP - TQ;
Chris@10 256 }
Chris@10 257 {
Chris@10 258 E Tx, TS, TE, TT;
Chris@10 259 {
Chris@10 260 E Tt, Tv, Ty, TC;
Chris@10 261 Tt = W[6];
Chris@10 262 Tv = W[7];
Chris@10 263 Tx = FNMS(Tv, Tw, Tt * Tu);
Chris@10 264 TS = FMA(Tv, Tu, Tt * Tw);
Chris@10 265 Ty = W[0];
Chris@10 266 TC = W[1];
Chris@10 267 TE = FNMS(TC, TD, Ty * TB);
Chris@10 268 TT = FMA(TC, TB, Ty * TD);
Chris@10 269 }
Chris@10 270 TF = Tx + TE;
Chris@10 271 T11 = TS + TT;
Chris@10 272 TH = TE - Tx;
Chris@10 273 TU = TS - TT;
Chris@10 274 }
Chris@10 275 }
Chris@10 276 {
Chris@10 277 E T12, Td, TG, TZ;
Chris@10 278 T12 = KP433012701 * (T10 - T11);
Chris@10 279 Td = T3 - Tc;
Chris@10 280 TG = Ts + TF;
Chris@10 281 TZ = FNMS(KP250000000, TG, KP500000000 * Td);
Chris@10 282 Ip[0] = KP500000000 * (Td + TG);
Chris@10 283 Im[WS(rs, 1)] = T12 - TZ;
Chris@10 284 Ip[WS(rs, 2)] = TZ + T12;
Chris@10 285 }
Chris@10 286 {
Chris@10 287 E T16, T13, T14, T15;
Chris@10 288 T16 = KP433012701 * (Ts - TF);
Chris@10 289 T13 = TM + TN;
Chris@10 290 T14 = T10 + T11;
Chris@10 291 T15 = FNMS(KP250000000, T14, KP500000000 * T13);
Chris@10 292 Rp[WS(rs, 2)] = T15 - T16;
Chris@10 293 Rp[0] = KP500000000 * (T13 + T14);
Chris@10 294 Rm[WS(rs, 1)] = T16 + T15;
Chris@10 295 }
Chris@10 296 {
Chris@10 297 E TY, TJ, TK, TX;
Chris@10 298 TY = KP433012701 * (TU - TR);
Chris@10 299 TJ = TH - TI;
Chris@10 300 TK = Tc + T3;
Chris@10 301 TX = FMA(KP500000000, TK, KP250000000 * TJ);
Chris@10 302 Im[WS(rs, 2)] = KP500000000 * (TJ - TK);
Chris@10 303 Im[0] = TY - TX;
Chris@10 304 Ip[WS(rs, 1)] = TX + TY;
Chris@10 305 }
Chris@10 306 {
Chris@10 307 E TL, TO, TV, TW;
Chris@10 308 TL = KP433012701 * (TI + TH);
Chris@10 309 TO = TM - TN;
Chris@10 310 TV = TR + TU;
Chris@10 311 TW = FNMS(KP250000000, TV, KP500000000 * TO);
Chris@10 312 Rp[WS(rs, 1)] = TL + TW;
Chris@10 313 Rm[WS(rs, 2)] = KP500000000 * (TO + TV);
Chris@10 314 Rm[0] = TW - TL;
Chris@10 315 }
Chris@10 316 }
Chris@10 317 }
Chris@10 318 }
Chris@10 319
Chris@10 320 static const tw_instr twinstr[] = {
Chris@10 321 {TW_FULL, 1, 6},
Chris@10 322 {TW_NEXT, 1, 0}
Chris@10 323 };
Chris@10 324
Chris@10 325 static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, {44, 22, 14, 0} };
Chris@10 326
Chris@10 327 void X(codelet_hc2cfdft_6) (planner *p) {
Chris@10 328 X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
Chris@10 329 }
Chris@10 330 #endif /* HAVE_FMA */