annotate src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_4.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:44 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include hc2cf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 30 FP additions, 20 FP multiplications,
Chris@10 32 * (or, 24 additions, 14 multiplications, 6 fused multiply/add),
Chris@10 33 * 32 stack variables, 1 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cf.h"
Chris@10 36
Chris@10 37 static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 43 E Td, Tu, Tr, T4, Tm, To, T9, T5, TA, Tp, Tv, TD, T6, Tq;
Chris@10 44 {
Chris@10 45 E Tk, Tl, Tf, TC, Tj, T7, T8, T1, Tn, Tb, Tc;
Chris@10 46 Tb = Ip[0];
Chris@10 47 Tc = Im[0];
Chris@10 48 {
Chris@10 49 E Ti, Tg, Th, T2, T3;
Chris@10 50 Tg = Rm[0];
Chris@10 51 Th = Rp[0];
Chris@10 52 Tk = W[1];
Chris@10 53 Tl = Tb + Tc;
Chris@10 54 Td = Tb - Tc;
Chris@10 55 Tu = Th + Tg;
Chris@10 56 Ti = Tg - Th;
Chris@10 57 Tf = W[0];
Chris@10 58 T2 = Ip[WS(rs, 1)];
Chris@10 59 T3 = Im[WS(rs, 1)];
Chris@10 60 TC = Tk * Ti;
Chris@10 61 Tj = Tf * Ti;
Chris@10 62 T7 = Rp[WS(rs, 1)];
Chris@10 63 Tr = T2 + T3;
Chris@10 64 T4 = T2 - T3;
Chris@10 65 T8 = Rm[WS(rs, 1)];
Chris@10 66 T1 = W[2];
Chris@10 67 Tn = W[4];
Chris@10 68 }
Chris@10 69 Tm = FNMS(Tk, Tl, Tj);
Chris@10 70 To = T7 - T8;
Chris@10 71 T9 = T7 + T8;
Chris@10 72 T5 = T1 * T4;
Chris@10 73 TA = Tn * Tr;
Chris@10 74 Tp = Tn * To;
Chris@10 75 Tv = T1 * T9;
Chris@10 76 TD = FMA(Tf, Tl, TC);
Chris@10 77 T6 = W[3];
Chris@10 78 Tq = W[5];
Chris@10 79 }
Chris@10 80 {
Chris@10 81 E Tw, Ta, TB, Ts;
Chris@10 82 Tw = FMA(T6, T4, Tv);
Chris@10 83 Ta = FNMS(T6, T9, T5);
Chris@10 84 TB = FNMS(Tq, To, TA);
Chris@10 85 Ts = FMA(Tq, Tr, Tp);
Chris@10 86 {
Chris@10 87 E TF, Tx, Te, Tz;
Chris@10 88 TF = Tu + Tw;
Chris@10 89 Tx = Tu - Tw;
Chris@10 90 Te = Ta + Td;
Chris@10 91 Tz = Td - Ta;
Chris@10 92 {
Chris@10 93 E TG, TE, Tt, Ty;
Chris@10 94 TG = TB + TD;
Chris@10 95 TE = TB - TD;
Chris@10 96 Tt = Tm - Ts;
Chris@10 97 Ty = Ts + Tm;
Chris@10 98 Im[0] = KP500000000 * (TE - Tz);
Chris@10 99 Ip[WS(rs, 1)] = KP500000000 * (Tz + TE);
Chris@10 100 Rp[0] = KP500000000 * (TF + TG);
Chris@10 101 Rm[WS(rs, 1)] = KP500000000 * (TF - TG);
Chris@10 102 Rp[WS(rs, 1)] = KP500000000 * (Tx + Ty);
Chris@10 103 Rm[0] = KP500000000 * (Tx - Ty);
Chris@10 104 Im[WS(rs, 1)] = KP500000000 * (Tt - Te);
Chris@10 105 Ip[0] = KP500000000 * (Te + Tt);
Chris@10 106 }
Chris@10 107 }
Chris@10 108 }
Chris@10 109 }
Chris@10 110 }
Chris@10 111 }
Chris@10 112
Chris@10 113 static const tw_instr twinstr[] = {
Chris@10 114 {TW_FULL, 1, 4},
Chris@10 115 {TW_NEXT, 1, 0}
Chris@10 116 };
Chris@10 117
Chris@10 118 static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, {24, 14, 6, 0} };
Chris@10 119
Chris@10 120 void X(codelet_hc2cfdft_4) (planner *p) {
Chris@10 121 X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT);
Chris@10 122 }
Chris@10 123 #else /* HAVE_FMA */
Chris@10 124
Chris@10 125 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include hc2cf.h */
Chris@10 126
Chris@10 127 /*
Chris@10 128 * This function contains 30 FP additions, 20 FP multiplications,
Chris@10 129 * (or, 24 additions, 14 multiplications, 6 fused multiply/add),
Chris@10 130 * 18 stack variables, 1 constants, and 16 memory accesses
Chris@10 131 */
Chris@10 132 #include "hc2cf.h"
Chris@10 133
Chris@10 134 static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 135 {
Chris@10 136 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 137 {
Chris@10 138 INT m;
Chris@10 139 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 140 E Tc, Tr, Tk, Tx, T9, Ts, Tp, Tw;
Chris@10 141 {
Chris@10 142 E Ta, Tb, Tj, Tf, Tg, Th, Te, Ti;
Chris@10 143 Ta = Ip[0];
Chris@10 144 Tb = Im[0];
Chris@10 145 Tj = Ta + Tb;
Chris@10 146 Tf = Rm[0];
Chris@10 147 Tg = Rp[0];
Chris@10 148 Th = Tf - Tg;
Chris@10 149 Tc = Ta - Tb;
Chris@10 150 Tr = Tg + Tf;
Chris@10 151 Te = W[0];
Chris@10 152 Ti = W[1];
Chris@10 153 Tk = FNMS(Ti, Tj, Te * Th);
Chris@10 154 Tx = FMA(Ti, Th, Te * Tj);
Chris@10 155 }
Chris@10 156 {
Chris@10 157 E T4, To, T8, Tm;
Chris@10 158 {
Chris@10 159 E T2, T3, T6, T7;
Chris@10 160 T2 = Ip[WS(rs, 1)];
Chris@10 161 T3 = Im[WS(rs, 1)];
Chris@10 162 T4 = T2 - T3;
Chris@10 163 To = T2 + T3;
Chris@10 164 T6 = Rp[WS(rs, 1)];
Chris@10 165 T7 = Rm[WS(rs, 1)];
Chris@10 166 T8 = T6 + T7;
Chris@10 167 Tm = T6 - T7;
Chris@10 168 }
Chris@10 169 {
Chris@10 170 E T1, T5, Tl, Tn;
Chris@10 171 T1 = W[2];
Chris@10 172 T5 = W[3];
Chris@10 173 T9 = FNMS(T5, T8, T1 * T4);
Chris@10 174 Ts = FMA(T1, T8, T5 * T4);
Chris@10 175 Tl = W[4];
Chris@10 176 Tn = W[5];
Chris@10 177 Tp = FMA(Tl, Tm, Tn * To);
Chris@10 178 Tw = FNMS(Tn, Tm, Tl * To);
Chris@10 179 }
Chris@10 180 }
Chris@10 181 {
Chris@10 182 E Td, Tq, Tz, TA;
Chris@10 183 Td = T9 + Tc;
Chris@10 184 Tq = Tk - Tp;
Chris@10 185 Ip[0] = KP500000000 * (Td + Tq);
Chris@10 186 Im[WS(rs, 1)] = KP500000000 * (Tq - Td);
Chris@10 187 Tz = Tr + Ts;
Chris@10 188 TA = Tw + Tx;
Chris@10 189 Rm[WS(rs, 1)] = KP500000000 * (Tz - TA);
Chris@10 190 Rp[0] = KP500000000 * (Tz + TA);
Chris@10 191 }
Chris@10 192 {
Chris@10 193 E Tt, Tu, Tv, Ty;
Chris@10 194 Tt = Tr - Ts;
Chris@10 195 Tu = Tp + Tk;
Chris@10 196 Rm[0] = KP500000000 * (Tt - Tu);
Chris@10 197 Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu);
Chris@10 198 Tv = Tc - T9;
Chris@10 199 Ty = Tw - Tx;
Chris@10 200 Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty);
Chris@10 201 Im[0] = KP500000000 * (Ty - Tv);
Chris@10 202 }
Chris@10 203 }
Chris@10 204 }
Chris@10 205 }
Chris@10 206
Chris@10 207 static const tw_instr twinstr[] = {
Chris@10 208 {TW_FULL, 1, 4},
Chris@10 209 {TW_NEXT, 1, 0}
Chris@10 210 };
Chris@10 211
Chris@10 212 static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, {24, 14, 6, 0} };
Chris@10 213
Chris@10 214 void X(codelet_hc2cfdft_4) (planner *p) {
Chris@10 215 X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT);
Chris@10 216 }
Chris@10 217 #endif /* HAVE_FMA */