Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:40:45 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include hc2cf.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 122 FP additions, 92 FP multiplications,
|
Chris@10
|
32 * (or, 68 additions, 38 multiplications, 54 fused multiply/add),
|
Chris@10
|
33 * 94 stack variables, 5 constants, and 40 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cf.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
42 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
43 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
44 {
|
Chris@10
|
45 INT m;
|
Chris@10
|
46 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
|
Chris@10
|
47 E T1x, T1I, T1T, T22, T20;
|
Chris@10
|
48 {
|
Chris@10
|
49 E T3, T1u, T1S, T2f, Td, T1w, T14, T1p, T1j, T1q, T1N, T2e, T1z, To, T2i;
|
Chris@10
|
50 E T1H, TQ, T1n, Ty, T1B;
|
Chris@10
|
51 {
|
Chris@10
|
52 E T1h, TW, Tc, T1b, T1g, T1f, T1Q, TV, T7, TS, T1J, TU, Ts, T19, T18;
|
Chris@10
|
53 E T15, Tx, T17, T1O, T1A, Tt, TD, Ti, TE, Tn, TA, T1F, TC, T1y, Tj;
|
Chris@10
|
54 E T11, T12, TJ, TZ, TO, TY, TG, T1L, T1e, T1, T2;
|
Chris@10
|
55 T1 = Ip[0];
|
Chris@10
|
56 T2 = Im[0];
|
Chris@10
|
57 {
|
Chris@10
|
58 E Ta, Tb, T1c, T1d;
|
Chris@10
|
59 Ta = Rp[WS(rs, 2)];
|
Chris@10
|
60 Tb = Rm[WS(rs, 2)];
|
Chris@10
|
61 T1c = Rm[0];
|
Chris@10
|
62 T1h = T1 + T2;
|
Chris@10
|
63 T3 = T1 - T2;
|
Chris@10
|
64 T1d = Rp[0];
|
Chris@10
|
65 TW = Ta + Tb;
|
Chris@10
|
66 Tc = Ta - Tb;
|
Chris@10
|
67 T1b = W[0];
|
Chris@10
|
68 T1u = T1d + T1c;
|
Chris@10
|
69 T1e = T1c - T1d;
|
Chris@10
|
70 T1g = W[1];
|
Chris@10
|
71 }
|
Chris@10
|
72 {
|
Chris@10
|
73 E T16, Tp, TT, T5, T6, TB, Tf;
|
Chris@10
|
74 T5 = Ip[WS(rs, 2)];
|
Chris@10
|
75 T6 = Im[WS(rs, 2)];
|
Chris@10
|
76 T1f = T1b * T1e;
|
Chris@10
|
77 T1Q = T1g * T1e;
|
Chris@10
|
78 TV = W[7];
|
Chris@10
|
79 T7 = T5 + T6;
|
Chris@10
|
80 TT = T5 - T6;
|
Chris@10
|
81 TS = W[6];
|
Chris@10
|
82 {
|
Chris@10
|
83 E Tv, Tw, Tq, Tr;
|
Chris@10
|
84 Tq = Rm[WS(rs, 3)];
|
Chris@10
|
85 Tr = Rp[WS(rs, 3)];
|
Chris@10
|
86 T1J = TV * TT;
|
Chris@10
|
87 TU = TS * TT;
|
Chris@10
|
88 Tv = Ip[WS(rs, 3)];
|
Chris@10
|
89 Ts = Tq - Tr;
|
Chris@10
|
90 T19 = Tr + Tq;
|
Chris@10
|
91 Tw = Im[WS(rs, 3)];
|
Chris@10
|
92 T18 = W[11];
|
Chris@10
|
93 T15 = W[10];
|
Chris@10
|
94 Tx = Tv + Tw;
|
Chris@10
|
95 T16 = Tv - Tw;
|
Chris@10
|
96 Tp = W[12];
|
Chris@10
|
97 }
|
Chris@10
|
98 {
|
Chris@10
|
99 E Tg, Th, Tl, Tm;
|
Chris@10
|
100 Tg = Ip[WS(rs, 1)];
|
Chris@10
|
101 T17 = T15 * T16;
|
Chris@10
|
102 T1O = T18 * T16;
|
Chris@10
|
103 T1A = Tp * Tx;
|
Chris@10
|
104 Tt = Tp * Ts;
|
Chris@10
|
105 Th = Im[WS(rs, 1)];
|
Chris@10
|
106 Tl = Rp[WS(rs, 1)];
|
Chris@10
|
107 Tm = Rm[WS(rs, 1)];
|
Chris@10
|
108 TD = W[5];
|
Chris@10
|
109 Ti = Tg - Th;
|
Chris@10
|
110 TE = Tg + Th;
|
Chris@10
|
111 Tn = Tl + Tm;
|
Chris@10
|
112 TB = Tm - Tl;
|
Chris@10
|
113 TA = W[4];
|
Chris@10
|
114 Tf = W[2];
|
Chris@10
|
115 T1F = TD * TB;
|
Chris@10
|
116 }
|
Chris@10
|
117 {
|
Chris@10
|
118 E TH, TI, TM, TN;
|
Chris@10
|
119 TH = Ip[WS(rs, 4)];
|
Chris@10
|
120 TC = TA * TB;
|
Chris@10
|
121 T1y = Tf * Tn;
|
Chris@10
|
122 Tj = Tf * Ti;
|
Chris@10
|
123 TI = Im[WS(rs, 4)];
|
Chris@10
|
124 TM = Rp[WS(rs, 4)];
|
Chris@10
|
125 TN = Rm[WS(rs, 4)];
|
Chris@10
|
126 T11 = W[17];
|
Chris@10
|
127 T12 = TH + TI;
|
Chris@10
|
128 TJ = TH - TI;
|
Chris@10
|
129 TZ = TN - TM;
|
Chris@10
|
130 TO = TM + TN;
|
Chris@10
|
131 TY = W[16];
|
Chris@10
|
132 TG = W[14];
|
Chris@10
|
133 T1L = T11 * TZ;
|
Chris@10
|
134 }
|
Chris@10
|
135 }
|
Chris@10
|
136 {
|
Chris@10
|
137 E T10, T1D, TK, T4, T9, T1P, T1R, T8, T1v;
|
Chris@10
|
138 T10 = TY * TZ;
|
Chris@10
|
139 T1D = TG * TO;
|
Chris@10
|
140 TK = TG * TJ;
|
Chris@10
|
141 T4 = W[9];
|
Chris@10
|
142 T9 = W[8];
|
Chris@10
|
143 T1P = FMA(T15, T19, T1O);
|
Chris@10
|
144 T1R = FMA(T1b, T1h, T1Q);
|
Chris@10
|
145 T8 = T4 * T7;
|
Chris@10
|
146 T1v = T9 * T7;
|
Chris@10
|
147 {
|
Chris@10
|
148 E TX, T13, T1a, T1i;
|
Chris@10
|
149 TX = FNMS(TV, TW, TU);
|
Chris@10
|
150 T1S = T1P - T1R;
|
Chris@10
|
151 T2f = T1P + T1R;
|
Chris@10
|
152 Td = FMA(T9, Tc, T8);
|
Chris@10
|
153 T1w = FNMS(T4, Tc, T1v);
|
Chris@10
|
154 T13 = FNMS(T11, T12, T10);
|
Chris@10
|
155 T1a = FNMS(T18, T19, T17);
|
Chris@10
|
156 T1i = FNMS(T1g, T1h, T1f);
|
Chris@10
|
157 {
|
Chris@10
|
158 E T1K, T1M, TF, T1G, TL;
|
Chris@10
|
159 T1K = FMA(TS, TW, T1J);
|
Chris@10
|
160 T14 = TX + T13;
|
Chris@10
|
161 T1p = T13 - TX;
|
Chris@10
|
162 T1j = T1a + T1i;
|
Chris@10
|
163 T1q = T1i - T1a;
|
Chris@10
|
164 T1M = FMA(TY, T12, T1L);
|
Chris@10
|
165 TF = FNMS(TD, TE, TC);
|
Chris@10
|
166 T1G = FMA(TA, TE, T1F);
|
Chris@10
|
167 TL = W[15];
|
Chris@10
|
168 T1N = T1K - T1M;
|
Chris@10
|
169 T2e = T1K + T1M;
|
Chris@10
|
170 {
|
Chris@10
|
171 E Tk, T1E, TP, Tu;
|
Chris@10
|
172 Tk = W[3];
|
Chris@10
|
173 T1E = FMA(TL, TJ, T1D);
|
Chris@10
|
174 TP = FNMS(TL, TO, TK);
|
Chris@10
|
175 Tu = W[13];
|
Chris@10
|
176 T1z = FMA(Tk, Ti, T1y);
|
Chris@10
|
177 To = FNMS(Tk, Tn, Tj);
|
Chris@10
|
178 T2i = T1G + T1E;
|
Chris@10
|
179 T1H = T1E - T1G;
|
Chris@10
|
180 TQ = TF + TP;
|
Chris@10
|
181 T1n = TF - TP;
|
Chris@10
|
182 Ty = FNMS(Tu, Tx, Tt);
|
Chris@10
|
183 T1B = FMA(Tu, Ts, T1A);
|
Chris@10
|
184 }
|
Chris@10
|
185 }
|
Chris@10
|
186 }
|
Chris@10
|
187 }
|
Chris@10
|
188 }
|
Chris@10
|
189 {
|
Chris@10
|
190 E T2p, T1t, T1m, T1C, T2o, T2m, T2k, T2w, T2y, T2n, T2d, T2l;
|
Chris@10
|
191 {
|
Chris@10
|
192 E T2g, Te, T2h, T2u, T1k, TR, T2v, Tz;
|
Chris@10
|
193 T2p = T2e + T2f;
|
Chris@10
|
194 T2g = T2e - T2f;
|
Chris@10
|
195 Te = T3 - Td;
|
Chris@10
|
196 T1t = Td + T3;
|
Chris@10
|
197 Tz = To + Ty;
|
Chris@10
|
198 T1m = Ty - To;
|
Chris@10
|
199 T2h = T1z + T1B;
|
Chris@10
|
200 T1C = T1z - T1B;
|
Chris@10
|
201 T2u = T14 - T1j;
|
Chris@10
|
202 T1k = T14 + T1j;
|
Chris@10
|
203 TR = Tz + TQ;
|
Chris@10
|
204 T2v = Tz - TQ;
|
Chris@10
|
205 {
|
Chris@10
|
206 E T2c, T2b, T2j, T1l;
|
Chris@10
|
207 T2j = T2h - T2i;
|
Chris@10
|
208 T2o = T2h + T2i;
|
Chris@10
|
209 T2c = TR - T1k;
|
Chris@10
|
210 T1l = TR + T1k;
|
Chris@10
|
211 T2m = FMA(KP618033988, T2g, T2j);
|
Chris@10
|
212 T2k = FNMS(KP618033988, T2j, T2g);
|
Chris@10
|
213 T2w = FNMS(KP618033988, T2v, T2u);
|
Chris@10
|
214 T2y = FMA(KP618033988, T2u, T2v);
|
Chris@10
|
215 Ip[0] = KP500000000 * (Te + T1l);
|
Chris@10
|
216 T2b = FNMS(KP250000000, T1l, Te);
|
Chris@10
|
217 T2n = T1u + T1w;
|
Chris@10
|
218 T1x = T1u - T1w;
|
Chris@10
|
219 T2d = FNMS(KP559016994, T2c, T2b);
|
Chris@10
|
220 T2l = FMA(KP559016994, T2c, T2b);
|
Chris@10
|
221 }
|
Chris@10
|
222 }
|
Chris@10
|
223 {
|
Chris@10
|
224 E T1o, T1Y, T28, T2a, T1Z, T1r, T2t, T2x;
|
Chris@10
|
225 {
|
Chris@10
|
226 E T26, T2s, T2q, T27, T2r;
|
Chris@10
|
227 T1I = T1C + T1H;
|
Chris@10
|
228 T26 = T1H - T1C;
|
Chris@10
|
229 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T2k, T2d)));
|
Chris@10
|
230 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T2k, T2d));
|
Chris@10
|
231 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T2m, T2l)));
|
Chris@10
|
232 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T2m, T2l));
|
Chris@10
|
233 T2s = T2o - T2p;
|
Chris@10
|
234 T2q = T2o + T2p;
|
Chris@10
|
235 T27 = T1S - T1N;
|
Chris@10
|
236 T1T = T1N + T1S;
|
Chris@10
|
237 T1o = T1m + T1n;
|
Chris@10
|
238 T1Y = T1n - T1m;
|
Chris@10
|
239 Rp[0] = KP500000000 * (T2n + T2q);
|
Chris@10
|
240 T2r = FNMS(KP250000000, T2q, T2n);
|
Chris@10
|
241 T28 = FMA(KP618033988, T27, T26);
|
Chris@10
|
242 T2a = FNMS(KP618033988, T26, T27);
|
Chris@10
|
243 T1Z = T1q - T1p;
|
Chris@10
|
244 T1r = T1p + T1q;
|
Chris@10
|
245 T2t = FNMS(KP559016994, T2s, T2r);
|
Chris@10
|
246 T2x = FMA(KP559016994, T2s, T2r);
|
Chris@10
|
247 }
|
Chris@10
|
248 {
|
Chris@10
|
249 E T24, T23, T1s, T25, T29;
|
Chris@10
|
250 T1s = T1o + T1r;
|
Chris@10
|
251 T24 = T1r - T1o;
|
Chris@10
|
252 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T2w, T2t));
|
Chris@10
|
253 Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T2w, T2t));
|
Chris@10
|
254 Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2y, T2x));
|
Chris@10
|
255 Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T2y, T2x));
|
Chris@10
|
256 Im[WS(rs, 4)] = KP500000000 * (T1s - T1t);
|
Chris@10
|
257 T23 = FMA(KP250000000, T1s, T1t);
|
Chris@10
|
258 T25 = FMA(KP559016994, T24, T23);
|
Chris@10
|
259 T29 = FNMS(KP559016994, T24, T23);
|
Chris@10
|
260 T22 = FNMS(KP618033988, T1Y, T1Z);
|
Chris@10
|
261 T20 = FMA(KP618033988, T1Z, T1Y);
|
Chris@10
|
262 Im[0] = -(KP500000000 * (FNMS(KP951056516, T28, T25)));
|
Chris@10
|
263 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T28, T25));
|
Chris@10
|
264 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP951056516, T2a, T29)));
|
Chris@10
|
265 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2a, T29));
|
Chris@10
|
266 }
|
Chris@10
|
267 }
|
Chris@10
|
268 }
|
Chris@10
|
269 }
|
Chris@10
|
270 {
|
Chris@10
|
271 E T1U, T1W, T1V, T21, T1X;
|
Chris@10
|
272 T1U = T1I + T1T;
|
Chris@10
|
273 T1W = T1I - T1T;
|
Chris@10
|
274 Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U);
|
Chris@10
|
275 T1V = FNMS(KP250000000, T1U, T1x);
|
Chris@10
|
276 T21 = FNMS(KP559016994, T1W, T1V);
|
Chris@10
|
277 T1X = FMA(KP559016994, T1W, T1V);
|
Chris@10
|
278 Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X));
|
Chris@10
|
279 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X));
|
Chris@10
|
280 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21));
|
Chris@10
|
281 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21));
|
Chris@10
|
282 }
|
Chris@10
|
283 }
|
Chris@10
|
284 }
|
Chris@10
|
285 }
|
Chris@10
|
286
|
Chris@10
|
287 static const tw_instr twinstr[] = {
|
Chris@10
|
288 {TW_FULL, 1, 10},
|
Chris@10
|
289 {TW_NEXT, 1, 0}
|
Chris@10
|
290 };
|
Chris@10
|
291
|
Chris@10
|
292 static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {68, 38, 54, 0} };
|
Chris@10
|
293
|
Chris@10
|
294 void X(codelet_hc2cfdft_10) (planner *p) {
|
Chris@10
|
295 X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
|
Chris@10
|
296 }
|
Chris@10
|
297 #else /* HAVE_FMA */
|
Chris@10
|
298
|
Chris@10
|
299 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include hc2cf.h */
|
Chris@10
|
300
|
Chris@10
|
301 /*
|
Chris@10
|
302 * This function contains 122 FP additions, 68 FP multiplications,
|
Chris@10
|
303 * (or, 92 additions, 38 multiplications, 30 fused multiply/add),
|
Chris@10
|
304 * 62 stack variables, 5 constants, and 40 memory accesses
|
Chris@10
|
305 */
|
Chris@10
|
306 #include "hc2cf.h"
|
Chris@10
|
307
|
Chris@10
|
308 static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
309 {
|
Chris@10
|
310 DK(KP293892626, +0.293892626146236564584352977319536384298826219);
|
Chris@10
|
311 DK(KP475528258, +0.475528258147576786058219666689691071702849317);
|
Chris@10
|
312 DK(KP125000000, +0.125000000000000000000000000000000000000000000);
|
Chris@10
|
313 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
314 DK(KP279508497, +0.279508497187473712051146708591409529430077295);
|
Chris@10
|
315 {
|
Chris@10
|
316 INT m;
|
Chris@10
|
317 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
|
Chris@10
|
318 E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f;
|
Chris@10
|
319 E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F;
|
Chris@10
|
320 {
|
Chris@10
|
321 E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12;
|
Chris@10
|
322 E T1y, TF, T1r, TW, T1w;
|
Chris@10
|
323 {
|
Chris@10
|
324 E T1, T2, T18, T14, T15, T16, T13, T17;
|
Chris@10
|
325 T1 = Ip[0];
|
Chris@10
|
326 T2 = Im[0];
|
Chris@10
|
327 T18 = T1 + T2;
|
Chris@10
|
328 T14 = Rm[0];
|
Chris@10
|
329 T15 = Rp[0];
|
Chris@10
|
330 T16 = T14 - T15;
|
Chris@10
|
331 T3 = T1 - T2;
|
Chris@10
|
332 T1D = T15 + T14;
|
Chris@10
|
333 T13 = W[0];
|
Chris@10
|
334 T17 = W[1];
|
Chris@10
|
335 T19 = FNMS(T17, T18, T13 * T16);
|
Chris@10
|
336 T1z = FMA(T17, T16, T13 * T18);
|
Chris@10
|
337 }
|
Chris@10
|
338 {
|
Chris@10
|
339 E T5, T6, TO, T9, Ta, TQ, TN, TP;
|
Chris@10
|
340 T5 = Ip[WS(rs, 2)];
|
Chris@10
|
341 T6 = Im[WS(rs, 2)];
|
Chris@10
|
342 TO = T5 - T6;
|
Chris@10
|
343 T9 = Rp[WS(rs, 2)];
|
Chris@10
|
344 Ta = Rm[WS(rs, 2)];
|
Chris@10
|
345 TQ = T9 + Ta;
|
Chris@10
|
346 T7 = T5 + T6;
|
Chris@10
|
347 Tb = T9 - Ta;
|
Chris@10
|
348 TN = W[6];
|
Chris@10
|
349 TP = W[7];
|
Chris@10
|
350 TR = FNMS(TP, TQ, TN * TO);
|
Chris@10
|
351 T1v = FMA(TP, TO, TN * TQ);
|
Chris@10
|
352 }
|
Chris@10
|
353 {
|
Chris@10
|
354 E Th, TJ, Tl, TH;
|
Chris@10
|
355 {
|
Chris@10
|
356 E Tf, Tg, Tj, Tk;
|
Chris@10
|
357 Tf = Ip[WS(rs, 1)];
|
Chris@10
|
358 Tg = Im[WS(rs, 1)];
|
Chris@10
|
359 Th = Tf - Tg;
|
Chris@10
|
360 TJ = Tf + Tg;
|
Chris@10
|
361 Tj = Rp[WS(rs, 1)];
|
Chris@10
|
362 Tk = Rm[WS(rs, 1)];
|
Chris@10
|
363 Tl = Tj + Tk;
|
Chris@10
|
364 TH = Tj - Tk;
|
Chris@10
|
365 }
|
Chris@10
|
366 {
|
Chris@10
|
367 E Te, Ti, TG, TI;
|
Chris@10
|
368 Te = W[2];
|
Chris@10
|
369 Ti = W[3];
|
Chris@10
|
370 Tm = FNMS(Ti, Tl, Te * Th);
|
Chris@10
|
371 T1o = FMA(Te, Tl, Ti * Th);
|
Chris@10
|
372 TG = W[4];
|
Chris@10
|
373 TI = W[5];
|
Chris@10
|
374 TK = FMA(TG, TH, TI * TJ);
|
Chris@10
|
375 T1s = FNMS(TI, TH, TG * TJ);
|
Chris@10
|
376 }
|
Chris@10
|
377 }
|
Chris@10
|
378 {
|
Chris@10
|
379 E Tq, TZ, Tu, T11;
|
Chris@10
|
380 {
|
Chris@10
|
381 E To, Tp, Ts, Tt;
|
Chris@10
|
382 To = Ip[WS(rs, 3)];
|
Chris@10
|
383 Tp = Im[WS(rs, 3)];
|
Chris@10
|
384 Tq = To + Tp;
|
Chris@10
|
385 TZ = To - Tp;
|
Chris@10
|
386 Ts = Rp[WS(rs, 3)];
|
Chris@10
|
387 Tt = Rm[WS(rs, 3)];
|
Chris@10
|
388 Tu = Ts - Tt;
|
Chris@10
|
389 T11 = Ts + Tt;
|
Chris@10
|
390 }
|
Chris@10
|
391 {
|
Chris@10
|
392 E Tn, Tr, TY, T10;
|
Chris@10
|
393 Tn = W[13];
|
Chris@10
|
394 Tr = W[12];
|
Chris@10
|
395 Tv = FMA(Tn, Tq, Tr * Tu);
|
Chris@10
|
396 T1p = FNMS(Tn, Tu, Tr * Tq);
|
Chris@10
|
397 TY = W[10];
|
Chris@10
|
398 T10 = W[11];
|
Chris@10
|
399 T12 = FNMS(T10, T11, TY * TZ);
|
Chris@10
|
400 T1y = FMA(T10, TZ, TY * T11);
|
Chris@10
|
401 }
|
Chris@10
|
402 }
|
Chris@10
|
403 {
|
Chris@10
|
404 E TA, TV, TE, TT;
|
Chris@10
|
405 {
|
Chris@10
|
406 E Ty, Tz, TC, TD;
|
Chris@10
|
407 Ty = Ip[WS(rs, 4)];
|
Chris@10
|
408 Tz = Im[WS(rs, 4)];
|
Chris@10
|
409 TA = Ty - Tz;
|
Chris@10
|
410 TV = Ty + Tz;
|
Chris@10
|
411 TC = Rp[WS(rs, 4)];
|
Chris@10
|
412 TD = Rm[WS(rs, 4)];
|
Chris@10
|
413 TE = TC + TD;
|
Chris@10
|
414 TT = TC - TD;
|
Chris@10
|
415 }
|
Chris@10
|
416 {
|
Chris@10
|
417 E Tx, TB, TS, TU;
|
Chris@10
|
418 Tx = W[14];
|
Chris@10
|
419 TB = W[15];
|
Chris@10
|
420 TF = FNMS(TB, TE, Tx * TA);
|
Chris@10
|
421 T1r = FMA(Tx, TE, TB * TA);
|
Chris@10
|
422 TS = W[16];
|
Chris@10
|
423 TU = W[17];
|
Chris@10
|
424 TW = FMA(TS, TT, TU * TV);
|
Chris@10
|
425 T1w = FNMS(TU, TT, TS * TV);
|
Chris@10
|
426 }
|
Chris@10
|
427 }
|
Chris@10
|
428 Tw = Tm - Tv;
|
Chris@10
|
429 TL = TF - TK;
|
Chris@10
|
430 TM = Tw + TL;
|
Chris@10
|
431 T1W = T1v + T1w;
|
Chris@10
|
432 T1X = T1y + T1z;
|
Chris@10
|
433 T27 = T1W + T1X;
|
Chris@10
|
434 T1Z = T1o + T1p;
|
Chris@10
|
435 T20 = T1s + T1r;
|
Chris@10
|
436 T26 = T1Z + T20;
|
Chris@10
|
437 TX = TR - TW;
|
Chris@10
|
438 T1a = T12 + T19;
|
Chris@10
|
439 T1b = TX + T1a;
|
Chris@10
|
440 T1d = T19 - T12;
|
Chris@10
|
441 T1e = TR + TW;
|
Chris@10
|
442 T1f = T1d - T1e;
|
Chris@10
|
443 T1q = T1o - T1p;
|
Chris@10
|
444 T1t = T1r - T1s;
|
Chris@10
|
445 T1u = T1q + T1t;
|
Chris@10
|
446 T1x = T1v - T1w;
|
Chris@10
|
447 T1A = T1y - T1z;
|
Chris@10
|
448 T1B = T1x + T1A;
|
Chris@10
|
449 T1g = Tm + Tv;
|
Chris@10
|
450 T1h = TK + TF;
|
Chris@10
|
451 T1i = T1g + T1h;
|
Chris@10
|
452 {
|
Chris@10
|
453 E Tc, T1E, T4, T8;
|
Chris@10
|
454 T4 = W[9];
|
Chris@10
|
455 T8 = W[8];
|
Chris@10
|
456 Tc = FMA(T4, T7, T8 * Tb);
|
Chris@10
|
457 T1E = FNMS(T4, Tb, T8 * T7);
|
Chris@10
|
458 Td = T3 - Tc;
|
Chris@10
|
459 T25 = T1D + T1E;
|
Chris@10
|
460 T1k = Tc + T3;
|
Chris@10
|
461 T1F = T1D - T1E;
|
Chris@10
|
462 }
|
Chris@10
|
463 }
|
Chris@10
|
464 {
|
Chris@10
|
465 E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V;
|
Chris@10
|
466 T1U = KP279508497 * (TM - T1b);
|
Chris@10
|
467 T1c = TM + T1b;
|
Chris@10
|
468 T1T = FNMS(KP125000000, T1c, KP500000000 * Td);
|
Chris@10
|
469 T1Y = T1W - T1X;
|
Chris@10
|
470 T21 = T1Z - T20;
|
Chris@10
|
471 T22 = FNMS(KP293892626, T21, KP475528258 * T1Y);
|
Chris@10
|
472 T24 = FMA(KP475528258, T21, KP293892626 * T1Y);
|
Chris@10
|
473 Ip[0] = KP500000000 * (Td + T1c);
|
Chris@10
|
474 T23 = T1U + T1T;
|
Chris@10
|
475 Ip[WS(rs, 4)] = T23 + T24;
|
Chris@10
|
476 Im[WS(rs, 3)] = T24 - T23;
|
Chris@10
|
477 T1V = T1T - T1U;
|
Chris@10
|
478 Ip[WS(rs, 2)] = T1V + T22;
|
Chris@10
|
479 Im[WS(rs, 1)] = T22 - T1V;
|
Chris@10
|
480 }
|
Chris@10
|
481 {
|
Chris@10
|
482 E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b;
|
Chris@10
|
483 T2a = KP279508497 * (T26 - T27);
|
Chris@10
|
484 T28 = T26 + T27;
|
Chris@10
|
485 T29 = FNMS(KP125000000, T28, KP500000000 * T25);
|
Chris@10
|
486 T2c = TX - T1a;
|
Chris@10
|
487 T2d = Tw - TL;
|
Chris@10
|
488 T2e = FNMS(KP293892626, T2d, KP475528258 * T2c);
|
Chris@10
|
489 T2g = FMA(KP475528258, T2d, KP293892626 * T2c);
|
Chris@10
|
490 Rp[0] = KP500000000 * (T25 + T28);
|
Chris@10
|
491 T2f = T2a + T29;
|
Chris@10
|
492 Rp[WS(rs, 4)] = T2f - T2g;
|
Chris@10
|
493 Rm[WS(rs, 3)] = T2g + T2f;
|
Chris@10
|
494 T2b = T29 - T2a;
|
Chris@10
|
495 Rp[WS(rs, 2)] = T2b - T2e;
|
Chris@10
|
496 Rm[WS(rs, 1)] = T2e + T2b;
|
Chris@10
|
497 }
|
Chris@10
|
498 {
|
Chris@10
|
499 E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N;
|
Chris@10
|
500 T1M = KP279508497 * (T1i + T1f);
|
Chris@10
|
501 T1j = T1f - T1i;
|
Chris@10
|
502 T1L = FMA(KP500000000, T1k, KP125000000 * T1j);
|
Chris@10
|
503 T1O = T1A - T1x;
|
Chris@10
|
504 T1P = T1q - T1t;
|
Chris@10
|
505 T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O);
|
Chris@10
|
506 T1S = FMA(KP293892626, T1P, KP475528258 * T1O);
|
Chris@10
|
507 Im[WS(rs, 4)] = KP500000000 * (T1j - T1k);
|
Chris@10
|
508 T1R = T1L - T1M;
|
Chris@10
|
509 Ip[WS(rs, 3)] = T1R + T1S;
|
Chris@10
|
510 Im[WS(rs, 2)] = T1S - T1R;
|
Chris@10
|
511 T1N = T1L + T1M;
|
Chris@10
|
512 Ip[WS(rs, 1)] = T1N + T1Q;
|
Chris@10
|
513 Im[0] = T1Q - T1N;
|
Chris@10
|
514 }
|
Chris@10
|
515 {
|
Chris@10
|
516 E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I;
|
Chris@10
|
517 T1C = KP279508497 * (T1u - T1B);
|
Chris@10
|
518 T1G = T1u + T1B;
|
Chris@10
|
519 T1H = FNMS(KP125000000, T1G, KP500000000 * T1F);
|
Chris@10
|
520 T1l = T1g - T1h;
|
Chris@10
|
521 T1m = T1e + T1d;
|
Chris@10
|
522 T1n = FMA(KP475528258, T1l, KP293892626 * T1m);
|
Chris@10
|
523 T1J = FNMS(KP293892626, T1l, KP475528258 * T1m);
|
Chris@10
|
524 Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G);
|
Chris@10
|
525 T1K = T1H - T1C;
|
Chris@10
|
526 Rp[WS(rs, 3)] = T1J + T1K;
|
Chris@10
|
527 Rm[WS(rs, 2)] = T1K - T1J;
|
Chris@10
|
528 T1I = T1C + T1H;
|
Chris@10
|
529 Rp[WS(rs, 1)] = T1n + T1I;
|
Chris@10
|
530 Rm[0] = T1I - T1n;
|
Chris@10
|
531 }
|
Chris@10
|
532 }
|
Chris@10
|
533 }
|
Chris@10
|
534 }
|
Chris@10
|
535
|
Chris@10
|
536 static const tw_instr twinstr[] = {
|
Chris@10
|
537 {TW_FULL, 1, 10},
|
Chris@10
|
538 {TW_NEXT, 1, 0}
|
Chris@10
|
539 };
|
Chris@10
|
540
|
Chris@10
|
541 static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {92, 38, 30, 0} };
|
Chris@10
|
542
|
Chris@10
|
543 void X(codelet_hc2cfdft_10) (planner *p) {
|
Chris@10
|
544 X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
|
Chris@10
|
545 }
|
Chris@10
|
546 #endif /* HAVE_FMA */
|