annotate src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:40:50 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include hc2cf.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 90 FP additions, 66 FP multiplications,
Chris@10 32 * (or, 60 additions, 36 multiplications, 30 fused multiply/add),
Chris@10 33 * 68 stack variables, 2 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cf.h"
Chris@10 36
Chris@10 37 static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 44 E T1G, T1F, T1C, T1D, T1N, T1B, T1R, T1L;
Chris@10 45 {
Chris@10 46 E T1, T2, Th, Tj, T4, T3, Ti, Tp, T5;
Chris@10 47 T1 = W[0];
Chris@10 48 T2 = W[2];
Chris@10 49 Th = W[4];
Chris@10 50 Tj = W[5];
Chris@10 51 T4 = W[1];
Chris@10 52 T3 = T1 * T2;
Chris@10 53 Ti = T1 * Th;
Chris@10 54 Tp = T1 * Tj;
Chris@10 55 T5 = W[3];
Chris@10 56 {
Chris@10 57 E Tk, Tq, TI, T1a, T1u, TY, TF, TS, T1s, T1c, Tr, T1n, Tg, T16, Tn;
Chris@10 58 E T13, T1f, Ts, To, T1o;
Chris@10 59 {
Chris@10 60 E T6, Tw, Tc, TB, TQ, TM, TC, TR, Tz, TD, TA;
Chris@10 61 {
Chris@10 62 E TX, TV, TT, TU;
Chris@10 63 {
Chris@10 64 E TG, Tb, TH, TP, TL;
Chris@10 65 TG = Ip[0];
Chris@10 66 Tk = FMA(T4, Tj, Ti);
Chris@10 67 Tq = FNMS(T4, Th, Tp);
Chris@10 68 T6 = FMA(T4, T5, T3);
Chris@10 69 Tw = FNMS(T4, T5, T3);
Chris@10 70 Tb = T1 * T5;
Chris@10 71 TH = Im[0];
Chris@10 72 TT = Rm[0];
Chris@10 73 TP = T6 * Tj;
Chris@10 74 TL = T6 * Th;
Chris@10 75 Tc = FNMS(T4, T2, Tb);
Chris@10 76 TB = FMA(T4, T2, Tb);
Chris@10 77 TX = TG + TH;
Chris@10 78 TI = TG - TH;
Chris@10 79 TU = Rp[0];
Chris@10 80 TQ = FNMS(Tc, Th, TP);
Chris@10 81 TM = FMA(Tc, Tj, TL);
Chris@10 82 }
Chris@10 83 T1a = TU + TT;
Chris@10 84 TV = TT - TU;
Chris@10 85 {
Chris@10 86 E Tx, Ty, T1t, TW;
Chris@10 87 Tx = Ip[WS(rs, 2)];
Chris@10 88 Ty = Im[WS(rs, 2)];
Chris@10 89 T1t = T4 * TV;
Chris@10 90 TW = T1 * TV;
Chris@10 91 TC = Rp[WS(rs, 2)];
Chris@10 92 TR = Tx + Ty;
Chris@10 93 Tz = Tx - Ty;
Chris@10 94 T1u = FMA(T1, TX, T1t);
Chris@10 95 TY = FNMS(T4, TX, TW);
Chris@10 96 TD = Rm[WS(rs, 2)];
Chris@10 97 }
Chris@10 98 TA = Tw * Tz;
Chris@10 99 }
Chris@10 100 {
Chris@10 101 E Td, T9, T12, Te, Ta, T1m;
Chris@10 102 {
Chris@10 103 E T7, T8, TN, TE, TO, T1r, T1b;
Chris@10 104 T7 = Ip[WS(rs, 1)];
Chris@10 105 T8 = Im[WS(rs, 1)];
Chris@10 106 TN = TD - TC;
Chris@10 107 TE = TC + TD;
Chris@10 108 Td = Rp[WS(rs, 1)];
Chris@10 109 T9 = T7 - T8;
Chris@10 110 T12 = T7 + T8;
Chris@10 111 TO = TM * TN;
Chris@10 112 T1r = TQ * TN;
Chris@10 113 T1b = Tw * TE;
Chris@10 114 TF = FNMS(TB, TE, TA);
Chris@10 115 TS = FNMS(TQ, TR, TO);
Chris@10 116 T1s = FMA(TM, TR, T1r);
Chris@10 117 T1c = FMA(TB, Tz, T1b);
Chris@10 118 Te = Rm[WS(rs, 1)];
Chris@10 119 }
Chris@10 120 Ta = T6 * T9;
Chris@10 121 T1m = T2 * T12;
Chris@10 122 {
Chris@10 123 E Tl, T10, Tf, Tm, T11, T1e;
Chris@10 124 Tl = Ip[WS(rs, 3)];
Chris@10 125 T10 = Td - Te;
Chris@10 126 Tf = Td + Te;
Chris@10 127 Tm = Im[WS(rs, 3)];
Chris@10 128 Tr = Rp[WS(rs, 3)];
Chris@10 129 T11 = T2 * T10;
Chris@10 130 T1n = FNMS(T5, T10, T1m);
Chris@10 131 T1e = T6 * Tf;
Chris@10 132 Tg = FNMS(Tc, Tf, Ta);
Chris@10 133 T16 = Tl + Tm;
Chris@10 134 Tn = Tl - Tm;
Chris@10 135 T13 = FMA(T5, T12, T11);
Chris@10 136 T1f = FMA(Tc, T9, T1e);
Chris@10 137 Ts = Rm[WS(rs, 3)];
Chris@10 138 }
Chris@10 139 To = Tk * Tn;
Chris@10 140 T1o = Th * T16;
Chris@10 141 }
Chris@10 142 }
Chris@10 143 {
Chris@10 144 E T1z, T1K, T1y, T1k, T1J, T1A, T1x, T1j;
Chris@10 145 {
Chris@10 146 E T1w, TK, T1l, T19, T1d, T1i;
Chris@10 147 {
Chris@10 148 E TJ, T14, Tt, T1v, T1h;
Chris@10 149 T1z = TI - TF;
Chris@10 150 TJ = TF + TI;
Chris@10 151 T14 = Tr - Ts;
Chris@10 152 Tt = Tr + Ts;
Chris@10 153 T1v = T1s + T1u;
Chris@10 154 T1G = T1u - T1s;
Chris@10 155 {
Chris@10 156 E TZ, T1q, Tv, T18, T15;
Chris@10 157 T1F = TY - TS;
Chris@10 158 TZ = TS + TY;
Chris@10 159 T15 = Th * T14;
Chris@10 160 {
Chris@10 161 E T1p, T1g, Tu, T17;
Chris@10 162 T1p = FNMS(Tj, T14, T1o);
Chris@10 163 T1g = Tk * Tt;
Chris@10 164 Tu = FNMS(Tq, Tt, To);
Chris@10 165 T17 = FMA(Tj, T16, T15);
Chris@10 166 T1C = T1p - T1n;
Chris@10 167 T1q = T1n + T1p;
Chris@10 168 T1h = FMA(Tq, Tn, T1g);
Chris@10 169 T1K = Tg - Tu;
Chris@10 170 Tv = Tg + Tu;
Chris@10 171 T18 = T13 + T17;
Chris@10 172 T1D = T13 - T17;
Chris@10 173 }
Chris@10 174 T1w = T1q - T1v;
Chris@10 175 T1y = T1q + T1v;
Chris@10 176 TK = Tv + TJ;
Chris@10 177 T1l = TJ - Tv;
Chris@10 178 T1k = T18 + TZ;
Chris@10 179 T19 = TZ - T18;
Chris@10 180 }
Chris@10 181 T1J = T1a - T1c;
Chris@10 182 T1d = T1a + T1c;
Chris@10 183 T1i = T1f + T1h;
Chris@10 184 T1A = T1f - T1h;
Chris@10 185 }
Chris@10 186 Ip[0] = KP500000000 * (TK + T19);
Chris@10 187 Im[WS(rs, 3)] = KP500000000 * (T19 - TK);
Chris@10 188 Im[WS(rs, 1)] = KP500000000 * (T1w - T1l);
Chris@10 189 T1x = T1d + T1i;
Chris@10 190 T1j = T1d - T1i;
Chris@10 191 Ip[WS(rs, 2)] = KP500000000 * (T1l + T1w);
Chris@10 192 }
Chris@10 193 Rm[WS(rs, 3)] = KP500000000 * (T1x - T1y);
Chris@10 194 Rp[0] = KP500000000 * (T1x + T1y);
Chris@10 195 Rp[WS(rs, 2)] = KP500000000 * (T1j + T1k);
Chris@10 196 Rm[WS(rs, 1)] = KP500000000 * (T1j - T1k);
Chris@10 197 T1N = T1A + T1z;
Chris@10 198 T1B = T1z - T1A;
Chris@10 199 T1R = T1J + T1K;
Chris@10 200 T1L = T1J - T1K;
Chris@10 201 }
Chris@10 202 }
Chris@10 203 }
Chris@10 204 {
Chris@10 205 E T1E, T1O, T1H, T1P;
Chris@10 206 T1E = T1C + T1D;
Chris@10 207 T1O = T1C - T1D;
Chris@10 208 T1H = T1F - T1G;
Chris@10 209 T1P = T1F + T1G;
Chris@10 210 {
Chris@10 211 E T1S, T1Q, T1I, T1M;
Chris@10 212 T1S = T1O + T1P;
Chris@10 213 T1Q = T1O - T1P;
Chris@10 214 T1I = T1E + T1H;
Chris@10 215 T1M = T1H - T1E;
Chris@10 216 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1Q, T1N)));
Chris@10 217 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1Q, T1N));
Chris@10 218 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1S, T1R));
Chris@10 219 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1S, T1R));
Chris@10 220 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
Chris@10 221 Rm[0] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
Chris@10 222 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1I, T1B)));
Chris@10 223 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1I, T1B));
Chris@10 224 }
Chris@10 225 }
Chris@10 226 }
Chris@10 227 }
Chris@10 228 }
Chris@10 229
Chris@10 230 static const tw_instr twinstr[] = {
Chris@10 231 {TW_CEXP, 1, 1},
Chris@10 232 {TW_CEXP, 1, 3},
Chris@10 233 {TW_CEXP, 1, 7},
Chris@10 234 {TW_NEXT, 1, 0}
Chris@10 235 };
Chris@10 236
Chris@10 237 static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {60, 36, 30, 0} };
Chris@10 238
Chris@10 239 void X(codelet_hc2cfdft2_8) (planner *p) {
Chris@10 240 X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT);
Chris@10 241 }
Chris@10 242 #else /* HAVE_FMA */
Chris@10 243
Chris@10 244 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include hc2cf.h */
Chris@10 245
Chris@10 246 /*
Chris@10 247 * This function contains 90 FP additions, 56 FP multiplications,
Chris@10 248 * (or, 72 additions, 38 multiplications, 18 fused multiply/add),
Chris@10 249 * 51 stack variables, 2 constants, and 32 memory accesses
Chris@10 250 */
Chris@10 251 #include "hc2cf.h"
Chris@10 252
Chris@10 253 static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 254 {
Chris@10 255 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@10 256 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 257 {
Chris@10 258 INT m;
Chris@10 259 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 260 E T1, T4, T2, T5, Tu, Ty, T7, Td, Ti, Tj, Tk, TP, To, TN;
Chris@10 261 {
Chris@10 262 E T3, Tc, T6, Tb;
Chris@10 263 T1 = W[0];
Chris@10 264 T4 = W[1];
Chris@10 265 T2 = W[2];
Chris@10 266 T5 = W[3];
Chris@10 267 T3 = T1 * T2;
Chris@10 268 Tc = T4 * T2;
Chris@10 269 T6 = T4 * T5;
Chris@10 270 Tb = T1 * T5;
Chris@10 271 Tu = T3 - T6;
Chris@10 272 Ty = Tb + Tc;
Chris@10 273 T7 = T3 + T6;
Chris@10 274 Td = Tb - Tc;
Chris@10 275 Ti = W[4];
Chris@10 276 Tj = W[5];
Chris@10 277 Tk = FMA(T1, Ti, T4 * Tj);
Chris@10 278 TP = FNMS(Td, Ti, T7 * Tj);
Chris@10 279 To = FNMS(T4, Ti, T1 * Tj);
Chris@10 280 TN = FMA(T7, Ti, Td * Tj);
Chris@10 281 }
Chris@10 282 {
Chris@10 283 E TF, T11, TC, T12, T1d, T1e, T1q, TM, TR, T1p, Th, Ts, T15, T14, T1a;
Chris@10 284 E T1b, T1m, TV, TY, T1n;
Chris@10 285 {
Chris@10 286 E TD, TE, TL, TI, TJ, TK, Tx, TQ, TB, TO;
Chris@10 287 TD = Ip[0];
Chris@10 288 TE = Im[0];
Chris@10 289 TL = TD + TE;
Chris@10 290 TI = Rm[0];
Chris@10 291 TJ = Rp[0];
Chris@10 292 TK = TI - TJ;
Chris@10 293 {
Chris@10 294 E Tv, Tw, Tz, TA;
Chris@10 295 Tv = Ip[WS(rs, 2)];
Chris@10 296 Tw = Im[WS(rs, 2)];
Chris@10 297 Tx = Tv - Tw;
Chris@10 298 TQ = Tv + Tw;
Chris@10 299 Tz = Rp[WS(rs, 2)];
Chris@10 300 TA = Rm[WS(rs, 2)];
Chris@10 301 TB = Tz + TA;
Chris@10 302 TO = Tz - TA;
Chris@10 303 }
Chris@10 304 TF = TD - TE;
Chris@10 305 T11 = TJ + TI;
Chris@10 306 TC = FNMS(Ty, TB, Tu * Tx);
Chris@10 307 T12 = FMA(Tu, TB, Ty * Tx);
Chris@10 308 T1d = FNMS(TP, TO, TN * TQ);
Chris@10 309 T1e = FMA(T4, TK, T1 * TL);
Chris@10 310 T1q = T1e - T1d;
Chris@10 311 TM = FNMS(T4, TL, T1 * TK);
Chris@10 312 TR = FMA(TN, TO, TP * TQ);
Chris@10 313 T1p = TR + TM;
Chris@10 314 }
Chris@10 315 {
Chris@10 316 E Ta, TU, Tg, TT, Tn, TX, Tr, TW;
Chris@10 317 {
Chris@10 318 E T8, T9, Te, Tf;
Chris@10 319 T8 = Ip[WS(rs, 1)];
Chris@10 320 T9 = Im[WS(rs, 1)];
Chris@10 321 Ta = T8 - T9;
Chris@10 322 TU = T8 + T9;
Chris@10 323 Te = Rp[WS(rs, 1)];
Chris@10 324 Tf = Rm[WS(rs, 1)];
Chris@10 325 Tg = Te + Tf;
Chris@10 326 TT = Te - Tf;
Chris@10 327 }
Chris@10 328 {
Chris@10 329 E Tl, Tm, Tp, Tq;
Chris@10 330 Tl = Ip[WS(rs, 3)];
Chris@10 331 Tm = Im[WS(rs, 3)];
Chris@10 332 Tn = Tl - Tm;
Chris@10 333 TX = Tl + Tm;
Chris@10 334 Tp = Rp[WS(rs, 3)];
Chris@10 335 Tq = Rm[WS(rs, 3)];
Chris@10 336 Tr = Tp + Tq;
Chris@10 337 TW = Tp - Tq;
Chris@10 338 }
Chris@10 339 Th = FNMS(Td, Tg, T7 * Ta);
Chris@10 340 Ts = FNMS(To, Tr, Tk * Tn);
Chris@10 341 T15 = FMA(Tk, Tr, To * Tn);
Chris@10 342 T14 = FMA(T7, Tg, Td * Ta);
Chris@10 343 T1a = FNMS(T5, TT, T2 * TU);
Chris@10 344 T1b = FNMS(Tj, TW, Ti * TX);
Chris@10 345 T1m = T1b - T1a;
Chris@10 346 TV = FMA(T2, TT, T5 * TU);
Chris@10 347 TY = FMA(Ti, TW, Tj * TX);
Chris@10 348 T1n = TV - TY;
Chris@10 349 }
Chris@10 350 {
Chris@10 351 E T1l, T1x, T1A, T1C, T1s, T1w, T1v, T1B;
Chris@10 352 {
Chris@10 353 E T1j, T1k, T1y, T1z;
Chris@10 354 T1j = TF - TC;
Chris@10 355 T1k = T14 - T15;
Chris@10 356 T1l = KP500000000 * (T1j - T1k);
Chris@10 357 T1x = KP500000000 * (T1k + T1j);
Chris@10 358 T1y = T1m - T1n;
Chris@10 359 T1z = T1p + T1q;
Chris@10 360 T1A = KP353553390 * (T1y - T1z);
Chris@10 361 T1C = KP353553390 * (T1y + T1z);
Chris@10 362 }
Chris@10 363 {
Chris@10 364 E T1o, T1r, T1t, T1u;
Chris@10 365 T1o = T1m + T1n;
Chris@10 366 T1r = T1p - T1q;
Chris@10 367 T1s = KP353553390 * (T1o + T1r);
Chris@10 368 T1w = KP353553390 * (T1r - T1o);
Chris@10 369 T1t = T11 - T12;
Chris@10 370 T1u = Th - Ts;
Chris@10 371 T1v = KP500000000 * (T1t - T1u);
Chris@10 372 T1B = KP500000000 * (T1t + T1u);
Chris@10 373 }
Chris@10 374 Ip[WS(rs, 1)] = T1l + T1s;
Chris@10 375 Rp[WS(rs, 1)] = T1B + T1C;
Chris@10 376 Im[WS(rs, 2)] = T1s - T1l;
Chris@10 377 Rm[WS(rs, 2)] = T1B - T1C;
Chris@10 378 Rm[0] = T1v - T1w;
Chris@10 379 Im[0] = T1A - T1x;
Chris@10 380 Rp[WS(rs, 3)] = T1v + T1w;
Chris@10 381 Ip[WS(rs, 3)] = T1x + T1A;
Chris@10 382 }
Chris@10 383 {
Chris@10 384 E TH, T19, T1g, T1i, T10, T18, T17, T1h;
Chris@10 385 {
Chris@10 386 E Tt, TG, T1c, T1f;
Chris@10 387 Tt = Th + Ts;
Chris@10 388 TG = TC + TF;
Chris@10 389 TH = Tt + TG;
Chris@10 390 T19 = TG - Tt;
Chris@10 391 T1c = T1a + T1b;
Chris@10 392 T1f = T1d + T1e;
Chris@10 393 T1g = T1c - T1f;
Chris@10 394 T1i = T1c + T1f;
Chris@10 395 }
Chris@10 396 {
Chris@10 397 E TS, TZ, T13, T16;
Chris@10 398 TS = TM - TR;
Chris@10 399 TZ = TV + TY;
Chris@10 400 T10 = TS - TZ;
Chris@10 401 T18 = TZ + TS;
Chris@10 402 T13 = T11 + T12;
Chris@10 403 T16 = T14 + T15;
Chris@10 404 T17 = T13 - T16;
Chris@10 405 T1h = T13 + T16;
Chris@10 406 }
Chris@10 407 Ip[0] = KP500000000 * (TH + T10);
Chris@10 408 Rp[0] = KP500000000 * (T1h + T1i);
Chris@10 409 Im[WS(rs, 3)] = KP500000000 * (T10 - TH);
Chris@10 410 Rm[WS(rs, 3)] = KP500000000 * (T1h - T1i);
Chris@10 411 Rm[WS(rs, 1)] = KP500000000 * (T17 - T18);
Chris@10 412 Im[WS(rs, 1)] = KP500000000 * (T1g - T19);
Chris@10 413 Rp[WS(rs, 2)] = KP500000000 * (T17 + T18);
Chris@10 414 Ip[WS(rs, 2)] = KP500000000 * (T19 + T1g);
Chris@10 415 }
Chris@10 416 }
Chris@10 417 }
Chris@10 418 }
Chris@10 419 }
Chris@10 420
Chris@10 421 static const tw_instr twinstr[] = {
Chris@10 422 {TW_CEXP, 1, 1},
Chris@10 423 {TW_CEXP, 1, 3},
Chris@10 424 {TW_CEXP, 1, 7},
Chris@10 425 {TW_NEXT, 1, 0}
Chris@10 426 };
Chris@10 427
Chris@10 428 static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {72, 38, 18, 0} };
Chris@10 429
Chris@10 430 void X(codelet_hc2cfdft2_8) (planner *p) {
Chris@10 431 X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT);
Chris@10 432 }
Chris@10 433 #endif /* HAVE_FMA */