annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_9.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:07 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include r2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 32 FP additions, 24 FP multiplications,
Chris@10 32 * (or, 8 additions, 0 multiplications, 24 fused multiply/add),
Chris@10 33 * 40 stack variables, 12 constants, and 18 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cb.h"
Chris@10 36
Chris@10 37 static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
Chris@10 40 DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
Chris@10 41 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@10 42 DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
Chris@10 43 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 44 DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
Chris@10 45 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
Chris@10 46 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
Chris@10 47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 49 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@10 50 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 51 {
Chris@10 52 INT i;
Chris@10 53 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
Chris@10 54 E T4, Th, T3, Tb, Tp, Tk, T7, Tf, Ti, Ta, T1, T2;
Chris@10 55 Ta = Ci[WS(csi, 3)];
Chris@10 56 T1 = Cr[0];
Chris@10 57 T2 = Cr[WS(csr, 3)];
Chris@10 58 T4 = Cr[WS(csr, 1)];
Chris@10 59 Th = Ci[WS(csi, 1)];
Chris@10 60 {
Chris@10 61 E T5, T9, T6, Td, Te;
Chris@10 62 T5 = Cr[WS(csr, 4)];
Chris@10 63 T9 = T1 - T2;
Chris@10 64 T3 = FMA(KP2_000000000, T2, T1);
Chris@10 65 T6 = Cr[WS(csr, 2)];
Chris@10 66 Td = Ci[WS(csi, 4)];
Chris@10 67 Te = Ci[WS(csi, 2)];
Chris@10 68 Tb = FNMS(KP1_732050807, Ta, T9);
Chris@10 69 Tp = FMA(KP1_732050807, Ta, T9);
Chris@10 70 Tk = T6 - T5;
Chris@10 71 T7 = T5 + T6;
Chris@10 72 Tf = Td + Te;
Chris@10 73 Ti = Td - Te;
Chris@10 74 }
Chris@10 75 {
Chris@10 76 E Tu, To, Tt, Tn, Tc, T8;
Chris@10 77 Tc = FNMS(KP500000000, T7, T4);
Chris@10 78 T8 = T4 + T7;
Chris@10 79 {
Chris@10 80 E Tw, Tj, Tr, Tg, Tv;
Chris@10 81 Tw = Ti + Th;
Chris@10 82 Tj = FNMS(KP500000000, Ti, Th);
Chris@10 83 Tr = FMA(KP866025403, Tf, Tc);
Chris@10 84 Tg = FNMS(KP866025403, Tf, Tc);
Chris@10 85 Tv = T3 - T8;
Chris@10 86 R0[0] = FMA(KP2_000000000, T8, T3);
Chris@10 87 {
Chris@10 88 E Tq, Tl, Ts, Tm;
Chris@10 89 Tq = FMA(KP866025403, Tk, Tj);
Chris@10 90 Tl = FNMS(KP866025403, Tk, Tj);
Chris@10 91 R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv);
Chris@10 92 R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv);
Chris@10 93 Ts = FNMS(KP176326980, Tr, Tq);
Chris@10 94 Tu = FMA(KP176326980, Tq, Tr);
Chris@10 95 Tm = FNMS(KP839099631, Tl, Tg);
Chris@10 96 To = FMA(KP839099631, Tg, Tl);
Chris@10 97 R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp);
Chris@10 98 Tt = FMA(KP984807753, Ts, Tp);
Chris@10 99 R1[0] = FMA(KP1_532088886, Tm, Tb);
Chris@10 100 Tn = FNMS(KP766044443, Tm, Tb);
Chris@10 101 }
Chris@10 102 }
Chris@10 103 R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt);
Chris@10 104 R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt);
Chris@10 105 R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn);
Chris@10 106 R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn);
Chris@10 107 }
Chris@10 108 }
Chris@10 109 }
Chris@10 110 }
Chris@10 111
Chris@10 112 static const kr2c_desc desc = { 9, "r2cb_9", {8, 0, 24, 0}, &GENUS };
Chris@10 113
Chris@10 114 void X(codelet_r2cb_9) (planner *p) {
Chris@10 115 X(kr2c_register) (p, r2cb_9, &desc);
Chris@10 116 }
Chris@10 117
Chris@10 118 #else /* HAVE_FMA */
Chris@10 119
Chris@10 120 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include r2cb.h */
Chris@10 121
Chris@10 122 /*
Chris@10 123 * This function contains 32 FP additions, 18 FP multiplications,
Chris@10 124 * (or, 22 additions, 8 multiplications, 10 fused multiply/add),
Chris@10 125 * 35 stack variables, 12 constants, and 18 memory accesses
Chris@10 126 */
Chris@10 127 #include "r2cb.h"
Chris@10 128
Chris@10 129 static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 130 {
Chris@10 131 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 132 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@10 133 DK(KP300767466, +0.300767466360870593278543795225003852144476517);
Chris@10 134 DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
Chris@10 135 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@10 136 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@10 137 DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
Chris@10 138 DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
Chris@10 139 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 140 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 141 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 142 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@10 143 {
Chris@10 144 INT i;
Chris@10 145 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
Chris@10 146 E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx;
Chris@10 147 {
Chris@10 148 E Tb, T1, T2, T9, Ta;
Chris@10 149 Ta = Ci[WS(csi, 3)];
Chris@10 150 Tb = KP1_732050807 * Ta;
Chris@10 151 T1 = Cr[0];
Chris@10 152 T2 = Cr[WS(csr, 3)];
Chris@10 153 T9 = T1 - T2;
Chris@10 154 T3 = FMA(KP2_000000000, T2, T1);
Chris@10 155 Tq = T9 + Tb;
Chris@10 156 Tc = T9 - Tb;
Chris@10 157 }
Chris@10 158 {
Chris@10 159 E T4, T7, Ti, Tg, Tl, Td;
Chris@10 160 T4 = Cr[WS(csr, 1)];
Chris@10 161 Tk = Ci[WS(csi, 1)];
Chris@10 162 {
Chris@10 163 E T5, T6, Te, Tf;
Chris@10 164 T5 = Cr[WS(csr, 4)];
Chris@10 165 T6 = Cr[WS(csr, 2)];
Chris@10 166 T7 = T5 + T6;
Chris@10 167 Ti = KP866025403 * (T5 - T6);
Chris@10 168 Te = Ci[WS(csi, 4)];
Chris@10 169 Tf = Ci[WS(csi, 2)];
Chris@10 170 Tg = KP866025403 * (Te + Tf);
Chris@10 171 Tj = Tf - Te;
Chris@10 172 }
Chris@10 173 T8 = T4 + T7;
Chris@10 174 Tl = FMA(KP500000000, Tj, Tk);
Chris@10 175 Tm = Ti + Tl;
Chris@10 176 Ts = Tl - Ti;
Chris@10 177 Td = FNMS(KP500000000, T7, T4);
Chris@10 178 Th = Td - Tg;
Chris@10 179 Tr = Td + Tg;
Chris@10 180 }
Chris@10 181 R0[0] = FMA(KP2_000000000, T8, T3);
Chris@10 182 Tw = T3 - T8;
Chris@10 183 Tx = KP1_732050807 * (Tk - Tj);
Chris@10 184 R1[WS(rs, 1)] = Tw - Tx;
Chris@10 185 R0[WS(rs, 3)] = Tw + Tx;
Chris@10 186 {
Chris@10 187 E Tp, Tn, To, Tv, Tt, Tu;
Chris@10 188 Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm);
Chris@10 189 Tn = FNMS(KP642787609, Tm, KP766044443 * Th);
Chris@10 190 To = Tc - Tn;
Chris@10 191 R1[0] = FMA(KP2_000000000, Tn, Tc);
Chris@10 192 R1[WS(rs, 3)] = To + Tp;
Chris@10 193 R0[WS(rs, 2)] = To - Tp;
Chris@10 194 Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts);
Chris@10 195 Tt = FNMS(KP984807753, Ts, KP173648177 * Tr);
Chris@10 196 Tu = Tq - Tt;
Chris@10 197 R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq);
Chris@10 198 R0[WS(rs, 4)] = Tu + Tv;
Chris@10 199 R1[WS(rs, 2)] = Tu - Tv;
Chris@10 200 }
Chris@10 201 }
Chris@10 202 }
Chris@10 203 }
Chris@10 204
Chris@10 205 static const kr2c_desc desc = { 9, "r2cb_9", {22, 8, 10, 0}, &GENUS };
Chris@10 206
Chris@10 207 void X(codelet_r2cb_9) (planner *p) {
Chris@10 208 X(kr2c_register) (p, r2cb_9, &desc);
Chris@10 209 }
Chris@10 210
Chris@10 211 #endif /* HAVE_FMA */