annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_16.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:08 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include r2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 58 FP additions, 32 FP multiplications,
Chris@10 32 * (or, 26 additions, 0 multiplications, 32 fused multiply/add),
Chris@10 33 * 47 stack variables, 4 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cb.h"
Chris@10 36
Chris@10 37 static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
Chris@10 40 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
Chris@10 41 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
Chris@10 42 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 43 {
Chris@10 44 INT i;
Chris@10 45 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
Chris@10 46 E TN, TS, TF, TI;
Chris@10 47 {
Chris@10 48 E T8, TD, Tj, TL, T5, TM, TE, To, Td, Tq, Tc, TP, Ty, Te, Tr;
Chris@10 49 E Ts;
Chris@10 50 {
Chris@10 51 E T4, Ti, T1, T2;
Chris@10 52 T4 = Cr[WS(csr, 4)];
Chris@10 53 Ti = Ci[WS(csi, 4)];
Chris@10 54 T1 = Cr[0];
Chris@10 55 T2 = Cr[WS(csr, 8)];
Chris@10 56 {
Chris@10 57 E Tk, Tn, T6, T7;
Chris@10 58 T6 = Cr[WS(csr, 2)];
Chris@10 59 T7 = Cr[WS(csr, 6)];
Chris@10 60 {
Chris@10 61 E Tl, Th, T3, Tm;
Chris@10 62 Tl = Ci[WS(csi, 2)];
Chris@10 63 Th = T1 - T2;
Chris@10 64 T3 = T1 + T2;
Chris@10 65 Tk = T6 - T7;
Chris@10 66 T8 = T6 + T7;
Chris@10 67 Tm = Ci[WS(csi, 6)];
Chris@10 68 TD = FMA(KP2_000000000, Ti, Th);
Chris@10 69 Tj = FNMS(KP2_000000000, Ti, Th);
Chris@10 70 TL = FNMS(KP2_000000000, T4, T3);
Chris@10 71 T5 = FMA(KP2_000000000, T4, T3);
Chris@10 72 Tn = Tl + Tm;
Chris@10 73 TM = Tl - Tm;
Chris@10 74 }
Chris@10 75 {
Chris@10 76 E Ta, Tb, Tw, Tx;
Chris@10 77 Ta = Cr[WS(csr, 1)];
Chris@10 78 TE = Tk + Tn;
Chris@10 79 To = Tk - Tn;
Chris@10 80 Tb = Cr[WS(csr, 7)];
Chris@10 81 Tw = Ci[WS(csi, 1)];
Chris@10 82 Tx = Ci[WS(csi, 7)];
Chris@10 83 Td = Cr[WS(csr, 5)];
Chris@10 84 Tq = Ta - Tb;
Chris@10 85 Tc = Ta + Tb;
Chris@10 86 TP = Tw - Tx;
Chris@10 87 Ty = Tw + Tx;
Chris@10 88 Te = Cr[WS(csr, 3)];
Chris@10 89 Tr = Ci[WS(csi, 5)];
Chris@10 90 Ts = Ci[WS(csi, 3)];
Chris@10 91 }
Chris@10 92 }
Chris@10 93 }
Chris@10 94 {
Chris@10 95 E TV, TG, TW, TH, TB, Tp, TA, TC, TJ, TK;
Chris@10 96 {
Chris@10 97 E T9, Tz, Tg, Tu, TT, TU, TO, TR;
Chris@10 98 TV = FNMS(KP2_000000000, T8, T5);
Chris@10 99 T9 = FMA(KP2_000000000, T8, T5);
Chris@10 100 {
Chris@10 101 E Tv, Tf, TQ, Tt;
Chris@10 102 Tv = Td - Te;
Chris@10 103 Tf = Td + Te;
Chris@10 104 TQ = Tr - Ts;
Chris@10 105 Tt = Tr + Ts;
Chris@10 106 TG = Ty - Tv;
Chris@10 107 Tz = Tv + Ty;
Chris@10 108 TO = Tc - Tf;
Chris@10 109 Tg = Tc + Tf;
Chris@10 110 TW = TQ + TP;
Chris@10 111 TR = TP - TQ;
Chris@10 112 TH = Tq + Tt;
Chris@10 113 Tu = Tq - Tt;
Chris@10 114 }
Chris@10 115 TN = FNMS(KP2_000000000, TM, TL);
Chris@10 116 TT = FMA(KP2_000000000, TM, TL);
Chris@10 117 TU = TO + TR;
Chris@10 118 TS = TO - TR;
Chris@10 119 R0[0] = FMA(KP2_000000000, Tg, T9);
Chris@10 120 R0[WS(rs, 4)] = FNMS(KP2_000000000, Tg, T9);
Chris@10 121 R0[WS(rs, 7)] = FMA(KP1_414213562, TU, TT);
Chris@10 122 R0[WS(rs, 3)] = FNMS(KP1_414213562, TU, TT);
Chris@10 123 TB = FNMS(KP1_414213562, To, Tj);
Chris@10 124 Tp = FMA(KP1_414213562, To, Tj);
Chris@10 125 TA = FNMS(KP414213562, Tz, Tu);
Chris@10 126 TC = FMA(KP414213562, Tu, Tz);
Chris@10 127 }
Chris@10 128 R0[WS(rs, 6)] = FMA(KP2_000000000, TW, TV);
Chris@10 129 R0[WS(rs, 2)] = FNMS(KP2_000000000, TW, TV);
Chris@10 130 R1[0] = FMA(KP1_847759065, TA, Tp);
Chris@10 131 R1[WS(rs, 4)] = FNMS(KP1_847759065, TA, Tp);
Chris@10 132 TF = FNMS(KP1_414213562, TE, TD);
Chris@10 133 TJ = FMA(KP1_414213562, TE, TD);
Chris@10 134 TK = FMA(KP414213562, TG, TH);
Chris@10 135 TI = FNMS(KP414213562, TH, TG);
Chris@10 136 R1[WS(rs, 6)] = FMA(KP1_847759065, TC, TB);
Chris@10 137 R1[WS(rs, 2)] = FNMS(KP1_847759065, TC, TB);
Chris@10 138 R1[WS(rs, 7)] = FMA(KP1_847759065, TK, TJ);
Chris@10 139 R1[WS(rs, 3)] = FNMS(KP1_847759065, TK, TJ);
Chris@10 140 }
Chris@10 141 }
Chris@10 142 R0[WS(rs, 1)] = FMA(KP1_414213562, TS, TN);
Chris@10 143 R0[WS(rs, 5)] = FNMS(KP1_414213562, TS, TN);
Chris@10 144 R1[WS(rs, 5)] = FMA(KP1_847759065, TI, TF);
Chris@10 145 R1[WS(rs, 1)] = FNMS(KP1_847759065, TI, TF);
Chris@10 146 }
Chris@10 147 }
Chris@10 148 }
Chris@10 149
Chris@10 150 static const kr2c_desc desc = { 16, "r2cb_16", {26, 0, 32, 0}, &GENUS };
Chris@10 151
Chris@10 152 void X(codelet_r2cb_16) (planner *p) {
Chris@10 153 X(kr2c_register) (p, r2cb_16, &desc);
Chris@10 154 }
Chris@10 155
Chris@10 156 #else /* HAVE_FMA */
Chris@10 157
Chris@10 158 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include r2cb.h */
Chris@10 159
Chris@10 160 /*
Chris@10 161 * This function contains 58 FP additions, 18 FP multiplications,
Chris@10 162 * (or, 54 additions, 14 multiplications, 4 fused multiply/add),
Chris@10 163 * 31 stack variables, 4 constants, and 32 memory accesses
Chris@10 164 */
Chris@10 165 #include "r2cb.h"
Chris@10 166
Chris@10 167 static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 168 {
Chris@10 169 DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
Chris@10 170 DK(KP765366864, +0.765366864730179543456919968060797733522689125);
Chris@10 171 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
Chris@10 172 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 173 {
Chris@10 174 INT i;
Chris@10 175 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
Chris@10 176 E T9, TS, Tl, TG, T6, TR, Ti, TD, Td, Tq, Tg, Tt, Tn, Tu, TV;
Chris@10 177 E TU, TN, TK;
Chris@10 178 {
Chris@10 179 E T7, T8, TE, Tj, Tk, TF;
Chris@10 180 T7 = Cr[WS(csr, 2)];
Chris@10 181 T8 = Cr[WS(csr, 6)];
Chris@10 182 TE = T7 - T8;
Chris@10 183 Tj = Ci[WS(csi, 2)];
Chris@10 184 Tk = Ci[WS(csi, 6)];
Chris@10 185 TF = Tj + Tk;
Chris@10 186 T9 = KP2_000000000 * (T7 + T8);
Chris@10 187 TS = KP1_414213562 * (TE + TF);
Chris@10 188 Tl = KP2_000000000 * (Tj - Tk);
Chris@10 189 TG = KP1_414213562 * (TE - TF);
Chris@10 190 }
Chris@10 191 {
Chris@10 192 E T5, TC, T3, TA;
Chris@10 193 {
Chris@10 194 E T4, TB, T1, T2;
Chris@10 195 T4 = Cr[WS(csr, 4)];
Chris@10 196 T5 = KP2_000000000 * T4;
Chris@10 197 TB = Ci[WS(csi, 4)];
Chris@10 198 TC = KP2_000000000 * TB;
Chris@10 199 T1 = Cr[0];
Chris@10 200 T2 = Cr[WS(csr, 8)];
Chris@10 201 T3 = T1 + T2;
Chris@10 202 TA = T1 - T2;
Chris@10 203 }
Chris@10 204 T6 = T3 + T5;
Chris@10 205 TR = TA + TC;
Chris@10 206 Ti = T3 - T5;
Chris@10 207 TD = TA - TC;
Chris@10 208 }
Chris@10 209 {
Chris@10 210 E TI, TM, TL, TJ;
Chris@10 211 {
Chris@10 212 E Tb, Tc, To, Tp;
Chris@10 213 Tb = Cr[WS(csr, 1)];
Chris@10 214 Tc = Cr[WS(csr, 7)];
Chris@10 215 Td = Tb + Tc;
Chris@10 216 TI = Tb - Tc;
Chris@10 217 To = Ci[WS(csi, 1)];
Chris@10 218 Tp = Ci[WS(csi, 7)];
Chris@10 219 Tq = To - Tp;
Chris@10 220 TM = To + Tp;
Chris@10 221 }
Chris@10 222 {
Chris@10 223 E Te, Tf, Tr, Ts;
Chris@10 224 Te = Cr[WS(csr, 5)];
Chris@10 225 Tf = Cr[WS(csr, 3)];
Chris@10 226 Tg = Te + Tf;
Chris@10 227 TL = Te - Tf;
Chris@10 228 Tr = Ci[WS(csi, 5)];
Chris@10 229 Ts = Ci[WS(csi, 3)];
Chris@10 230 Tt = Tr - Ts;
Chris@10 231 TJ = Tr + Ts;
Chris@10 232 }
Chris@10 233 Tn = Td - Tg;
Chris@10 234 Tu = Tq - Tt;
Chris@10 235 TV = TM - TL;
Chris@10 236 TU = TI + TJ;
Chris@10 237 TN = TL + TM;
Chris@10 238 TK = TI - TJ;
Chris@10 239 }
Chris@10 240 {
Chris@10 241 E Ta, Th, TT, TW;
Chris@10 242 Ta = T6 + T9;
Chris@10 243 Th = KP2_000000000 * (Td + Tg);
Chris@10 244 R0[WS(rs, 4)] = Ta - Th;
Chris@10 245 R0[0] = Ta + Th;
Chris@10 246 TT = TR - TS;
Chris@10 247 TW = FNMS(KP1_847759065, TV, KP765366864 * TU);
Chris@10 248 R1[WS(rs, 5)] = TT - TW;
Chris@10 249 R1[WS(rs, 1)] = TT + TW;
Chris@10 250 }
Chris@10 251 {
Chris@10 252 E TX, TY, Tm, Tv;
Chris@10 253 TX = TR + TS;
Chris@10 254 TY = FMA(KP1_847759065, TU, KP765366864 * TV);
Chris@10 255 R1[WS(rs, 3)] = TX - TY;
Chris@10 256 R1[WS(rs, 7)] = TX + TY;
Chris@10 257 Tm = Ti - Tl;
Chris@10 258 Tv = KP1_414213562 * (Tn - Tu);
Chris@10 259 R0[WS(rs, 5)] = Tm - Tv;
Chris@10 260 R0[WS(rs, 1)] = Tm + Tv;
Chris@10 261 }
Chris@10 262 {
Chris@10 263 E Tw, Tx, TH, TO;
Chris@10 264 Tw = Ti + Tl;
Chris@10 265 Tx = KP1_414213562 * (Tn + Tu);
Chris@10 266 R0[WS(rs, 3)] = Tw - Tx;
Chris@10 267 R0[WS(rs, 7)] = Tw + Tx;
Chris@10 268 TH = TD + TG;
Chris@10 269 TO = FNMS(KP765366864, TN, KP1_847759065 * TK);
Chris@10 270 R1[WS(rs, 4)] = TH - TO;
Chris@10 271 R1[0] = TH + TO;
Chris@10 272 }
Chris@10 273 {
Chris@10 274 E TP, TQ, Ty, Tz;
Chris@10 275 TP = TD - TG;
Chris@10 276 TQ = FMA(KP765366864, TK, KP1_847759065 * TN);
Chris@10 277 R1[WS(rs, 2)] = TP - TQ;
Chris@10 278 R1[WS(rs, 6)] = TP + TQ;
Chris@10 279 Ty = T6 - T9;
Chris@10 280 Tz = KP2_000000000 * (Tt + Tq);
Chris@10 281 R0[WS(rs, 2)] = Ty - Tz;
Chris@10 282 R0[WS(rs, 6)] = Ty + Tz;
Chris@10 283 }
Chris@10 284 }
Chris@10 285 }
Chris@10 286 }
Chris@10 287
Chris@10 288 static const kr2c_desc desc = { 16, "r2cb_16", {54, 14, 4, 0}, &GENUS };
Chris@10 289
Chris@10 290 void X(codelet_r2cb_16) (planner *p) {
Chris@10 291 X(kr2c_register) (p, r2cb_16, &desc);
Chris@10 292 }
Chris@10 293
Chris@10 294 #endif /* HAVE_FMA */