annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_14.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:08 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include r2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 62 FP additions, 44 FP multiplications,
Chris@10 32 * (or, 18 additions, 0 multiplications, 44 fused multiply/add),
Chris@10 33 * 58 stack variables, 7 constants, and 28 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cb.h"
Chris@10 36
Chris@10 37 static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
Chris@10 40 DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
Chris@10 41 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 42 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 43 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 44 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 45 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 46 {
Chris@10 47 INT i;
Chris@10 48 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
Chris@10 49 E Te, TO, TT, TG, TJ, TD, TR, TE;
Chris@10 50 {
Chris@10 51 E T3, TK, To, TM, Tu, TL, Tr, TS, TA, TN, TX, TF, Tv, T7, Tf;
Chris@10 52 E T6, Th, Tc, T8, T1, T2;
Chris@10 53 T1 = Cr[0];
Chris@10 54 T2 = Cr[WS(csr, 7)];
Chris@10 55 {
Chris@10 56 E Ts, Tt, Tp, Tq, Tm, Tn;
Chris@10 57 Tm = Ci[WS(csi, 4)];
Chris@10 58 Tn = Ci[WS(csi, 3)];
Chris@10 59 Ts = Ci[WS(csi, 6)];
Chris@10 60 Te = T1 + T2;
Chris@10 61 T3 = T1 - T2;
Chris@10 62 TK = Tm + Tn;
Chris@10 63 To = Tm - Tn;
Chris@10 64 Tt = Ci[WS(csi, 1)];
Chris@10 65 Tp = Ci[WS(csi, 2)];
Chris@10 66 Tq = Ci[WS(csi, 5)];
Chris@10 67 {
Chris@10 68 E T4, T5, Ta, Tb;
Chris@10 69 T4 = Cr[WS(csr, 2)];
Chris@10 70 TM = Ts + Tt;
Chris@10 71 Tu = Ts - Tt;
Chris@10 72 TL = Tp + Tq;
Chris@10 73 Tr = Tp - Tq;
Chris@10 74 TS = FMA(KP554958132, TK, TM);
Chris@10 75 TA = FMA(KP554958132, To, Tu);
Chris@10 76 TN = FMA(KP554958132, TM, TL);
Chris@10 77 TX = FNMS(KP554958132, TL, TK);
Chris@10 78 TF = FNMS(KP554958132, Tr, To);
Chris@10 79 Tv = FMA(KP554958132, Tu, Tr);
Chris@10 80 T5 = Cr[WS(csr, 5)];
Chris@10 81 Ta = Cr[WS(csr, 6)];
Chris@10 82 Tb = Cr[WS(csr, 1)];
Chris@10 83 T7 = Cr[WS(csr, 4)];
Chris@10 84 Tf = T4 + T5;
Chris@10 85 T6 = T4 - T5;
Chris@10 86 Th = Ta + Tb;
Chris@10 87 Tc = Ta - Tb;
Chris@10 88 T8 = Cr[WS(csr, 3)];
Chris@10 89 }
Chris@10 90 }
Chris@10 91 {
Chris@10 92 E Tw, Tx, TP, Tg, T9, TY, TC, TI, TQ;
Chris@10 93 Tw = FMA(KP801937735, Tv, To);
Chris@10 94 Tx = FNMS(KP356895867, Tf, Th);
Chris@10 95 TP = FNMS(KP356895867, T6, Tc);
Chris@10 96 Tg = T7 + T8;
Chris@10 97 T9 = T7 - T8;
Chris@10 98 TY = FNMS(KP801937735, TX, TM);
Chris@10 99 {
Chris@10 100 E TB, TH, TV, Ty, Tl, Ti, TW, Tz;
Chris@10 101 TB = FNMS(KP801937735, TA, Tr);
Chris@10 102 Ti = Tf + Tg + Th;
Chris@10 103 TC = FNMS(KP356895867, Th, Tg);
Chris@10 104 {
Chris@10 105 E Tj, Td, TU, Tk;
Chris@10 106 Tj = FNMS(KP356895867, Tg, Tf);
Chris@10 107 Td = T6 + T9 + Tc;
Chris@10 108 TH = FNMS(KP356895867, T9, T6);
Chris@10 109 TU = FNMS(KP356895867, Tc, T9);
Chris@10 110 R0[0] = FMA(KP2_000000000, Ti, Te);
Chris@10 111 Tk = FNMS(KP692021471, Tj, Th);
Chris@10 112 R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3);
Chris@10 113 TV = FNMS(KP692021471, TU, T6);
Chris@10 114 Ty = FNMS(KP692021471, Tx, Tg);
Chris@10 115 Tl = FNMS(KP1_801937735, Tk, Te);
Chris@10 116 }
Chris@10 117 TO = FMA(KP801937735, TN, TK);
Chris@10 118 TW = FNMS(KP1_801937735, TV, T3);
Chris@10 119 Tz = FNMS(KP1_801937735, Ty, Te);
Chris@10 120 R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl);
Chris@10 121 R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl);
Chris@10 122 R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW);
Chris@10 123 R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW);
Chris@10 124 R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz);
Chris@10 125 R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz);
Chris@10 126 TI = FNMS(KP692021471, TH, Tc);
Chris@10 127 }
Chris@10 128 TT = FNMS(KP801937735, TS, TL);
Chris@10 129 TQ = FNMS(KP692021471, TP, T9);
Chris@10 130 TG = FNMS(KP801937735, TF, Tu);
Chris@10 131 TJ = FNMS(KP1_801937735, TI, T3);
Chris@10 132 TD = FNMS(KP692021471, TC, Tf);
Chris@10 133 TR = FNMS(KP1_801937735, TQ, T3);
Chris@10 134 }
Chris@10 135 }
Chris@10 136 R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ);
Chris@10 137 R1[0] = FNMS(KP1_949855824, TO, TJ);
Chris@10 138 TE = FNMS(KP1_801937735, TD, Te);
Chris@10 139 R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR);
Chris@10 140 R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR);
Chris@10 141 R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE);
Chris@10 142 R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE);
Chris@10 143 }
Chris@10 144 }
Chris@10 145 }
Chris@10 146
Chris@10 147 static const kr2c_desc desc = { 14, "r2cb_14", {18, 0, 44, 0}, &GENUS };
Chris@10 148
Chris@10 149 void X(codelet_r2cb_14) (planner *p) {
Chris@10 150 X(kr2c_register) (p, r2cb_14, &desc);
Chris@10 151 }
Chris@10 152
Chris@10 153 #else /* HAVE_FMA */
Chris@10 154
Chris@10 155 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include r2cb.h */
Chris@10 156
Chris@10 157 /*
Chris@10 158 * This function contains 62 FP additions, 38 FP multiplications,
Chris@10 159 * (or, 36 additions, 12 multiplications, 26 fused multiply/add),
Chris@10 160 * 28 stack variables, 7 constants, and 28 memory accesses
Chris@10 161 */
Chris@10 162 #include "r2cb.h"
Chris@10 163
Chris@10 164 static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 165 {
Chris@10 166 DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
Chris@10 167 DK(KP445041867, +0.445041867912628808577805128993589518932711138);
Chris@10 168 DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
Chris@10 169 DK(KP867767478, +0.867767478235116240951536665696717509219981456);
Chris@10 170 DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
Chris@10 171 DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
Chris@10 172 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 173 {
Chris@10 174 INT i;
Chris@10 175 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
Chris@10 176 E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1;
Chris@10 177 E T2;
Chris@10 178 T1 = Cr[0];
Chris@10 179 T2 = Cr[WS(csr, 7)];
Chris@10 180 T3 = T1 - T2;
Chris@10 181 Td = T1 + T2;
Chris@10 182 {
Chris@10 183 E T4, T5, To, Tp;
Chris@10 184 T4 = Cr[WS(csr, 2)];
Chris@10 185 T5 = Cr[WS(csr, 5)];
Chris@10 186 T6 = T4 - T5;
Chris@10 187 Te = T4 + T5;
Chris@10 188 To = Ci[WS(csi, 2)];
Chris@10 189 Tp = Ci[WS(csi, 5)];
Chris@10 190 Tq = To - Tp;
Chris@10 191 Tz = To + Tp;
Chris@10 192 }
Chris@10 193 {
Chris@10 194 E Tl, Tm, Ta, Tb;
Chris@10 195 Tl = Ci[WS(csi, 6)];
Chris@10 196 Tm = Ci[WS(csi, 1)];
Chris@10 197 Tn = Tl - Tm;
Chris@10 198 Ty = Tl + Tm;
Chris@10 199 Ta = Cr[WS(csr, 6)];
Chris@10 200 Tb = Cr[WS(csr, 1)];
Chris@10 201 Tc = Ta - Tb;
Chris@10 202 Tg = Ta + Tb;
Chris@10 203 }
Chris@10 204 {
Chris@10 205 E Ti, Tj, T7, T8;
Chris@10 206 Ti = Ci[WS(csi, 4)];
Chris@10 207 Tj = Ci[WS(csi, 3)];
Chris@10 208 Tk = Ti - Tj;
Chris@10 209 Tx = Ti + Tj;
Chris@10 210 T7 = Cr[WS(csr, 4)];
Chris@10 211 T8 = Cr[WS(csr, 3)];
Chris@10 212 T9 = T7 - T8;
Chris@10 213 Tf = T7 + T8;
Chris@10 214 }
Chris@10 215 R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3);
Chris@10 216 R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td);
Chris@10 217 {
Chris@10 218 E Tr, Th, TE, TD;
Chris@10 219 Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq);
Chris@10 220 Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te);
Chris@10 221 R0[WS(rs, 2)] = Th - Tr;
Chris@10 222 R0[WS(rs, 5)] = Th + Tr;
Chris@10 223 TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz);
Chris@10 224 TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6);
Chris@10 225 R1[WS(rs, 2)] = TD - TE;
Chris@10 226 R1[WS(rs, 4)] = TD + TE;
Chris@10 227 }
Chris@10 228 {
Chris@10 229 E Tt, Ts, TA, Tw;
Chris@10 230 Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq);
Chris@10 231 Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te);
Chris@10 232 R0[WS(rs, 6)] = Ts - Tt;
Chris@10 233 R0[WS(rs, 1)] = Ts + Tt;
Chris@10 234 TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz);
Chris@10 235 Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6);
Chris@10 236 R1[WS(rs, 5)] = Tw - TA;
Chris@10 237 R1[WS(rs, 1)] = Tw + TA;
Chris@10 238 }
Chris@10 239 {
Chris@10 240 E TC, TB, Tv, Tu;
Chris@10 241 TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty);
Chris@10 242 TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9);
Chris@10 243 R1[0] = TB - TC;
Chris@10 244 R1[WS(rs, 6)] = TB + TC;
Chris@10 245 Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn);
Chris@10 246 Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf);
Chris@10 247 R0[WS(rs, 4)] = Tu - Tv;
Chris@10 248 R0[WS(rs, 3)] = Tu + Tv;
Chris@10 249 }
Chris@10 250 }
Chris@10 251 }
Chris@10 252 }
Chris@10 253
Chris@10 254 static const kr2c_desc desc = { 14, "r2cb_14", {36, 12, 26, 0}, &GENUS };
Chris@10 255
Chris@10 256 void X(codelet_r2cb_14) (planner *p) {
Chris@10 257 X(kr2c_register) (p, r2cb_14, &desc);
Chris@10 258 }
Chris@10 259
Chris@10 260 #endif /* HAVE_FMA */