annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_11.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:07 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include r2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 60 FP additions, 56 FP multiplications,
Chris@10 32 * (or, 4 additions, 0 multiplications, 56 fused multiply/add),
Chris@10 33 * 53 stack variables, 11 constants, and 22 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cb.h"
Chris@10 36
Chris@10 37 static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
Chris@10 40 DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
Chris@10 41 DK(KP876768831, +0.876768831002589333891339807079336796764054852);
Chris@10 42 DK(KP918985947, +0.918985947228994779780736114132655398124909697);
Chris@10 43 DK(KP778434453, +0.778434453334651800608337670740821884709317477);
Chris@10 44 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 45 DK(KP634356270, +0.634356270682424498893150776899916060542806975);
Chris@10 46 DK(KP342584725, +0.342584725681637509502641509861112333758894680);
Chris@10 47 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
Chris@10 48 DK(KP715370323, +0.715370323453429719112414662767260662417897278);
Chris@10 49 DK(KP521108558, +0.521108558113202722944698153526659300680427422);
Chris@10 50 {
Chris@10 51 INT i;
Chris@10 52 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
Chris@10 53 E Tf, Tq, Tt, Tu;
Chris@10 54 {
Chris@10 55 E T1, Td, Th, Te, Tg, T2, Ts, TK, TB, TT, Tj, T6, T3, T4, T5;
Chris@10 56 E Tr;
Chris@10 57 T1 = Cr[0];
Chris@10 58 Td = Ci[WS(csi, 3)];
Chris@10 59 Th = Ci[WS(csi, 5)];
Chris@10 60 Te = Ci[WS(csi, 2)];
Chris@10 61 Tf = Ci[WS(csi, 4)];
Chris@10 62 Tg = Ci[WS(csi, 1)];
Chris@10 63 Tr = FMA(KP521108558, Td, Th);
Chris@10 64 T2 = Cr[WS(csr, 1)];
Chris@10 65 {
Chris@10 66 E TJ, TA, TS, Ti;
Chris@10 67 TJ = FMA(KP521108558, Tf, Td);
Chris@10 68 TA = FNMS(KP521108558, Te, Tf);
Chris@10 69 TS = FMS(KP521108558, Tg, Te);
Chris@10 70 Ti = FMA(KP521108558, Th, Tg);
Chris@10 71 Ts = FNMS(KP715370323, Tr, Te);
Chris@10 72 TK = FMA(KP715370323, TJ, Tg);
Chris@10 73 TB = FMA(KP715370323, TA, Th);
Chris@10 74 TT = FMA(KP715370323, TS, Td);
Chris@10 75 Tj = FMA(KP715370323, Ti, Tf);
Chris@10 76 T6 = Cr[WS(csr, 5)];
Chris@10 77 }
Chris@10 78 T3 = Cr[WS(csr, 2)];
Chris@10 79 T4 = Cr[WS(csr, 3)];
Chris@10 80 T5 = Cr[WS(csr, 4)];
Chris@10 81 {
Chris@10 82 E TG, Tx, To, Tl, Tb, TU, TQ, TP, Ta;
Chris@10 83 {
Chris@10 84 E Tk, TE, Tv, T8;
Chris@10 85 Tk = FMA(KP830830026, Tj, Te);
Chris@10 86 TE = FNMS(KP342584725, T3, T6);
Chris@10 87 Tv = FNMS(KP342584725, T2, T4);
Chris@10 88 T8 = FNMS(KP342584725, T4, T3);
Chris@10 89 {
Chris@10 90 E T7, Tm, TN, TF;
Chris@10 91 T7 = T2 + T3 + T4 + T5 + T6;
Chris@10 92 Tm = FNMS(KP342584725, T5, T2);
Chris@10 93 TN = FNMS(KP342584725, T6, T5);
Chris@10 94 TF = FNMS(KP634356270, TE, T2);
Chris@10 95 {
Chris@10 96 E Tw, T9, Tn, TO;
Chris@10 97 Tw = FNMS(KP634356270, Tv, T6);
Chris@10 98 T9 = FNMS(KP634356270, T8, T5);
Chris@10 99 R0[0] = FMA(KP2_000000000, T7, T1);
Chris@10 100 Tn = FNMS(KP634356270, Tm, T3);
Chris@10 101 TO = FNMS(KP634356270, TN, T4);
Chris@10 102 TG = FNMS(KP778434453, TF, T4);
Chris@10 103 Tx = FNMS(KP778434453, Tw, T5);
Chris@10 104 Ta = FNMS(KP778434453, T9, T2);
Chris@10 105 To = FNMS(KP778434453, Tn, T6);
Chris@10 106 TP = FNMS(KP778434453, TO, T3);
Chris@10 107 Tl = FMA(KP918985947, Tk, Td);
Chris@10 108 }
Chris@10 109 }
Chris@10 110 }
Chris@10 111 Tb = FNMS(KP876768831, Ta, T6);
Chris@10 112 TU = FNMS(KP830830026, TT, Tf);
Chris@10 113 TQ = FNMS(KP876768831, TP, T2);
Chris@10 114 {
Chris@10 115 E TI, TL, Ty, TC;
Chris@10 116 {
Chris@10 117 E Tc, TV, TR, TH;
Chris@10 118 TH = FNMS(KP876768831, TG, T5);
Chris@10 119 Tc = FNMS(KP1_918985947, Tb, T1);
Chris@10 120 TV = FNMS(KP918985947, TU, Th);
Chris@10 121 TR = FNMS(KP1_918985947, TQ, T1);
Chris@10 122 TI = FNMS(KP1_918985947, TH, T1);
Chris@10 123 R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc);
Chris@10 124 R1[0] = FNMS(KP1_979642883, Tl, Tc);
Chris@10 125 R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR);
Chris@10 126 R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR);
Chris@10 127 TL = FNMS(KP830830026, TK, Th);
Chris@10 128 }
Chris@10 129 Ty = FNMS(KP876768831, Tx, T3);
Chris@10 130 TC = FNMS(KP830830026, TB, Td);
Chris@10 131 {
Chris@10 132 E TM, Tz, TD, Tp;
Chris@10 133 Tp = FNMS(KP876768831, To, T4);
Chris@10 134 TM = FMA(KP918985947, TL, Te);
Chris@10 135 Tz = FNMS(KP1_918985947, Ty, T1);
Chris@10 136 TD = FNMS(KP918985947, TC, Tg);
Chris@10 137 Tq = FNMS(KP1_918985947, Tp, T1);
Chris@10 138 R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI);
Chris@10 139 R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI);
Chris@10 140 R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz);
Chris@10 141 R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz);
Chris@10 142 Tt = FMA(KP830830026, Ts, Tg);
Chris@10 143 }
Chris@10 144 }
Chris@10 145 }
Chris@10 146 }
Chris@10 147 Tu = FNMS(KP918985947, Tt, Tf);
Chris@10 148 R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq);
Chris@10 149 R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq);
Chris@10 150 }
Chris@10 151 }
Chris@10 152 }
Chris@10 153
Chris@10 154 static const kr2c_desc desc = { 11, "r2cb_11", {4, 0, 56, 0}, &GENUS };
Chris@10 155
Chris@10 156 void X(codelet_r2cb_11) (planner *p) {
Chris@10 157 X(kr2c_register) (p, r2cb_11, &desc);
Chris@10 158 }
Chris@10 159
Chris@10 160 #else /* HAVE_FMA */
Chris@10 161
Chris@10 162 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include r2cb.h */
Chris@10 163
Chris@10 164 /*
Chris@10 165 * This function contains 60 FP additions, 51 FP multiplications,
Chris@10 166 * (or, 19 additions, 10 multiplications, 41 fused multiply/add),
Chris@10 167 * 33 stack variables, 11 constants, and 22 memory accesses
Chris@10 168 */
Chris@10 169 #include "r2cb.h"
Chris@10 170
Chris@10 171 static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 172 {
Chris@10 173 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 174 DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
Chris@10 175 DK(KP1_309721467, +1.309721467890570128113850144932587106367582399);
Chris@10 176 DK(KP284629676, +0.284629676546570280887585337232739337582102722);
Chris@10 177 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
Chris@10 178 DK(KP1_682507065, +1.682507065662362337723623297838735435026584997);
Chris@10 179 DK(KP563465113, +0.563465113682859395422835830693233798071555798);
Chris@10 180 DK(KP1_511499148, +1.511499148708516567548071687944688840359434890);
Chris@10 181 DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
Chris@10 182 DK(KP1_819263990, +1.819263990709036742823430766158056920120482102);
Chris@10 183 DK(KP1_081281634, +1.081281634911195164215271908637383390863541216);
Chris@10 184 {
Chris@10 185 INT i;
Chris@10 186 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
Chris@10 187 E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg;
Chris@10 188 E Ti;
Chris@10 189 {
Chris@10 190 E T8, Tc, T9, Ta, Tb;
Chris@10 191 T8 = Ci[WS(csi, 2)];
Chris@10 192 Tc = Ci[WS(csi, 1)];
Chris@10 193 T9 = Ci[WS(csi, 4)];
Chris@10 194 Ta = Ci[WS(csi, 5)];
Chris@10 195 Tb = Ci[WS(csi, 3)];
Chris@10 196 Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc);
Chris@10 197 Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc);
Chris@10 198 Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc);
Chris@10 199 Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta);
Chris@10 200 Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc);
Chris@10 201 }
Chris@10 202 T1 = Cr[0];
Chris@10 203 T2 = Cr[WS(csr, 1)];
Chris@10 204 T6 = Cr[WS(csr, 5)];
Chris@10 205 T5 = Cr[WS(csr, 4)];
Chris@10 206 T4 = Cr[WS(csr, 3)];
Chris@10 207 T3 = Cr[WS(csr, 2)];
Chris@10 208 T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2);
Chris@10 209 Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2);
Chris@10 210 Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2);
Chris@10 211 Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4);
Chris@10 212 Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3);
Chris@10 213 R0[WS(rs, 3)] = T7 - Td;
Chris@10 214 R0[WS(rs, 4)] = Te - Tf;
Chris@10 215 R0[WS(rs, 2)] = Tk + Tl;
Chris@10 216 R1[WS(rs, 2)] = T7 + Td;
Chris@10 217 R1[WS(rs, 3)] = Tk - Tl;
Chris@10 218 R0[WS(rs, 1)] = Ti + Tj;
Chris@10 219 R1[WS(rs, 1)] = Te + Tf;
Chris@10 220 R0[WS(rs, 5)] = Tg + Th;
Chris@10 221 R1[0] = Tg - Th;
Chris@10 222 R1[WS(rs, 4)] = Ti - Tj;
Chris@10 223 R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1);
Chris@10 224 }
Chris@10 225 }
Chris@10 226 }
Chris@10 227
Chris@10 228 static const kr2c_desc desc = { 11, "r2cb_11", {19, 10, 41, 0}, &GENUS };
Chris@10 229
Chris@10 230 void X(codelet_r2cb_11) (planner *p) {
Chris@10 231 X(kr2c_register) (p, r2cb_11, &desc);
Chris@10 232 }
Chris@10 233
Chris@10 234 #endif /* HAVE_FMA */