annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:07 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 34 FP additions, 20 FP multiplications,
Chris@10 32 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
Chris@10 33 * 30 stack variables, 5 constants, and 20 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cb.h"
Chris@10 36
Chris@10 37 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@10 40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@10 41 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 42 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 43 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 44 {
Chris@10 45 INT i;
Chris@10 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@10 47 E Tb, T3, Tc, T6, Tq, To, Ty, Tw, Td, T9;
Chris@10 48 {
Chris@10 49 E Tu, Tn, T7, Tv, Tk, T8;
Chris@10 50 {
Chris@10 51 E T1, T2, Tl, Tm;
Chris@10 52 T1 = Cr[0];
Chris@10 53 T2 = Cr[WS(csr, 5)];
Chris@10 54 Tl = Ci[WS(csi, 2)];
Chris@10 55 Tm = Ci[WS(csi, 3)];
Chris@10 56 {
Chris@10 57 E Ti, Tj, T4, T5;
Chris@10 58 Ti = Ci[WS(csi, 4)];
Chris@10 59 Tb = T1 + T2;
Chris@10 60 T3 = T1 - T2;
Chris@10 61 Tu = Tl + Tm;
Chris@10 62 Tn = Tl - Tm;
Chris@10 63 Tj = Ci[WS(csi, 1)];
Chris@10 64 T4 = Cr[WS(csr, 2)];
Chris@10 65 T5 = Cr[WS(csr, 3)];
Chris@10 66 T7 = Cr[WS(csr, 4)];
Chris@10 67 Tv = Ti + Tj;
Chris@10 68 Tk = Ti - Tj;
Chris@10 69 Tc = T4 + T5;
Chris@10 70 T6 = T4 - T5;
Chris@10 71 T8 = Cr[WS(csr, 1)];
Chris@10 72 }
Chris@10 73 }
Chris@10 74 Tq = FMA(KP618033988, Tk, Tn);
Chris@10 75 To = FNMS(KP618033988, Tn, Tk);
Chris@10 76 Ty = FNMS(KP618033988, Tu, Tv);
Chris@10 77 Tw = FMA(KP618033988, Tv, Tu);
Chris@10 78 Td = T7 + T8;
Chris@10 79 T9 = T7 - T8;
Chris@10 80 }
Chris@10 81 {
Chris@10 82 E Te, Tg, Ta, Ts, Tf, Tr;
Chris@10 83 Te = Tc + Td;
Chris@10 84 Tg = Tc - Td;
Chris@10 85 Ta = T6 + T9;
Chris@10 86 Ts = T6 - T9;
Chris@10 87 Tf = FNMS(KP500000000, Te, Tb);
Chris@10 88 R0[0] = FMA(KP2_000000000, Te, Tb);
Chris@10 89 Tr = FNMS(KP500000000, Ta, T3);
Chris@10 90 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
Chris@10 91 {
Chris@10 92 E Th, Tp, Tt, Tx;
Chris@10 93 Th = FNMS(KP1_118033988, Tg, Tf);
Chris@10 94 Tp = FMA(KP1_118033988, Tg, Tf);
Chris@10 95 Tt = FMA(KP1_118033988, Ts, Tr);
Chris@10 96 Tx = FNMS(KP1_118033988, Ts, Tr);
Chris@10 97 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
Chris@10 98 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
Chris@10 99 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
Chris@10 100 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
Chris@10 101 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
Chris@10 102 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
Chris@10 103 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
Chris@10 104 R1[0] = FNMS(KP1_902113032, Tw, Tt);
Chris@10 105 }
Chris@10 106 }
Chris@10 107 }
Chris@10 108 }
Chris@10 109 }
Chris@10 110
Chris@10 111 static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
Chris@10 112
Chris@10 113 void X(codelet_r2cb_10) (planner *p) {
Chris@10 114 X(kr2c_register) (p, r2cb_10, &desc);
Chris@10 115 }
Chris@10 116
Chris@10 117 #else /* HAVE_FMA */
Chris@10 118
Chris@10 119 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
Chris@10 120
Chris@10 121 /*
Chris@10 122 * This function contains 34 FP additions, 14 FP multiplications,
Chris@10 123 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
Chris@10 124 * 26 stack variables, 5 constants, and 20 memory accesses
Chris@10 125 */
Chris@10 126 #include "r2cb.h"
Chris@10 127
Chris@10 128 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 129 {
Chris@10 130 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 131 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@10 132 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
Chris@10 133 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 134 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@10 135 {
Chris@10 136 INT i;
Chris@10 137 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@10 138 E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
Chris@10 139 {
Chris@10 140 E T1, T2, Tl, Tm;
Chris@10 141 T1 = Cr[0];
Chris@10 142 T2 = Cr[WS(csr, 5)];
Chris@10 143 T3 = T1 - T2;
Chris@10 144 Tb = T1 + T2;
Chris@10 145 Tl = Ci[WS(csi, 4)];
Chris@10 146 Tm = Ci[WS(csi, 1)];
Chris@10 147 Tn = Tl - Tm;
Chris@10 148 Tv = Tl + Tm;
Chris@10 149 }
Chris@10 150 Ti = Ci[WS(csi, 2)];
Chris@10 151 Tj = Ci[WS(csi, 3)];
Chris@10 152 Tk = Ti - Tj;
Chris@10 153 Tu = Ti + Tj;
Chris@10 154 {
Chris@10 155 E T6, Tc, T9, Td;
Chris@10 156 {
Chris@10 157 E T4, T5, T7, T8;
Chris@10 158 T4 = Cr[WS(csr, 2)];
Chris@10 159 T5 = Cr[WS(csr, 3)];
Chris@10 160 T6 = T4 - T5;
Chris@10 161 Tc = T4 + T5;
Chris@10 162 T7 = Cr[WS(csr, 4)];
Chris@10 163 T8 = Cr[WS(csr, 1)];
Chris@10 164 T9 = T7 - T8;
Chris@10 165 Td = T7 + T8;
Chris@10 166 }
Chris@10 167 Ta = T6 + T9;
Chris@10 168 Ts = KP1_118033988 * (T6 - T9);
Chris@10 169 Te = Tc + Td;
Chris@10 170 Tg = KP1_118033988 * (Tc - Td);
Chris@10 171 }
Chris@10 172 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
Chris@10 173 R0[0] = FMA(KP2_000000000, Te, Tb);
Chris@10 174 {
Chris@10 175 E To, Tq, Th, Tp, Tf;
Chris@10 176 To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
Chris@10 177 Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
Chris@10 178 Tf = FNMS(KP500000000, Te, Tb);
Chris@10 179 Th = Tf - Tg;
Chris@10 180 Tp = Tg + Tf;
Chris@10 181 R0[WS(rs, 1)] = Th - To;
Chris@10 182 R0[WS(rs, 2)] = Tp + Tq;
Chris@10 183 R0[WS(rs, 4)] = Th + To;
Chris@10 184 R0[WS(rs, 3)] = Tp - Tq;
Chris@10 185 }
Chris@10 186 {
Chris@10 187 E Tw, Ty, Tt, Tx, Tr;
Chris@10 188 Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
Chris@10 189 Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
Chris@10 190 Tr = FNMS(KP500000000, Ta, T3);
Chris@10 191 Tt = Tr - Ts;
Chris@10 192 Tx = Ts + Tr;
Chris@10 193 R1[WS(rs, 3)] = Tt - Tw;
Chris@10 194 R1[WS(rs, 4)] = Tx + Ty;
Chris@10 195 R1[WS(rs, 1)] = Tt + Tw;
Chris@10 196 R1[0] = Tx - Ty;
Chris@10 197 }
Chris@10 198 }
Chris@10 199 }
Chris@10 200 }
Chris@10 201
Chris@10 202 static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
Chris@10 203
Chris@10 204 void X(codelet_r2cb_10) (planner *p) {
Chris@10 205 X(kr2c_register) (p, r2cb_10, &desc);
Chris@10 206 }
Chris@10 207
Chris@10 208 #endif /* HAVE_FMA */