Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:41:33 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include r2cbIII.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 24 FP additions, 22 FP multiplications,
|
Chris@10
|
32 * (or, 2 additions, 0 multiplications, 22 fused multiply/add),
|
Chris@10
|
33 * 31 stack variables, 7 constants, and 14 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "r2cbIII.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
|
Chris@10
|
40 DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
|
Chris@10
|
41 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
Chris@10
|
42 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
Chris@10
|
43 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
Chris@10
|
44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
Chris@10
|
45 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
Chris@10
|
46 {
|
Chris@10
|
47 INT i;
|
Chris@10
|
48 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
|
Chris@10
|
49 E Tn, Td, Tg, Ti, Tl, T8;
|
Chris@10
|
50 {
|
Chris@10
|
51 E T1, T9, Tb, Ta, T2, T4, Th, Tm, Tc, T3, Te;
|
Chris@10
|
52 T1 = Cr[WS(csr, 3)];
|
Chris@10
|
53 T9 = Ci[WS(csi, 1)];
|
Chris@10
|
54 Tb = Ci[0];
|
Chris@10
|
55 Ta = Ci[WS(csi, 2)];
|
Chris@10
|
56 T2 = Cr[WS(csr, 2)];
|
Chris@10
|
57 T4 = Cr[0];
|
Chris@10
|
58 Th = FMA(KP554958132, T9, Tb);
|
Chris@10
|
59 Tm = FNMS(KP554958132, Ta, T9);
|
Chris@10
|
60 Tc = FMA(KP554958132, Tb, Ta);
|
Chris@10
|
61 T3 = Cr[WS(csr, 1)];
|
Chris@10
|
62 Te = FNMS(KP356895867, T2, T4);
|
Chris@10
|
63 Tn = FNMS(KP801937735, Tm, Tb);
|
Chris@10
|
64 {
|
Chris@10
|
65 E Tf, Tk, T7, T5, Tj, T6;
|
Chris@10
|
66 Td = FMA(KP801937735, Tc, T9);
|
Chris@10
|
67 T5 = T2 + T3 + T4;
|
Chris@10
|
68 Tj = FNMS(KP356895867, T4, T3);
|
Chris@10
|
69 T6 = FNMS(KP356895867, T3, T2);
|
Chris@10
|
70 Tf = FNMS(KP692021471, Te, T3);
|
Chris@10
|
71 R0[0] = FMA(KP2_000000000, T5, T1);
|
Chris@10
|
72 Tk = FNMS(KP692021471, Tj, T2);
|
Chris@10
|
73 T7 = FNMS(KP692021471, T6, T4);
|
Chris@10
|
74 Tg = FNMS(KP1_801937735, Tf, T1);
|
Chris@10
|
75 Ti = FNMS(KP801937735, Th, Ta);
|
Chris@10
|
76 Tl = FNMS(KP1_801937735, Tk, T1);
|
Chris@10
|
77 T8 = FNMS(KP1_801937735, T7, T1);
|
Chris@10
|
78 }
|
Chris@10
|
79 }
|
Chris@10
|
80 R1[WS(rs, 2)] = FMS(KP1_949855824, Ti, Tg);
|
Chris@10
|
81 R0[WS(rs, 1)] = FMA(KP1_949855824, Ti, Tg);
|
Chris@10
|
82 R0[WS(rs, 2)] = FNMS(KP1_949855824, Tn, Tl);
|
Chris@10
|
83 R1[WS(rs, 1)] = -(FMA(KP1_949855824, Tn, Tl));
|
Chris@10
|
84 R0[WS(rs, 3)] = FNMS(KP1_949855824, Td, T8);
|
Chris@10
|
85 R1[0] = -(FMA(KP1_949855824, Td, T8));
|
Chris@10
|
86 }
|
Chris@10
|
87 }
|
Chris@10
|
88 }
|
Chris@10
|
89
|
Chris@10
|
90 static const kr2c_desc desc = { 7, "r2cbIII_7", {2, 0, 22, 0}, &GENUS };
|
Chris@10
|
91
|
Chris@10
|
92 void X(codelet_r2cbIII_7) (planner *p) {
|
Chris@10
|
93 X(kr2c_register) (p, r2cbIII_7, &desc);
|
Chris@10
|
94 }
|
Chris@10
|
95
|
Chris@10
|
96 #else /* HAVE_FMA */
|
Chris@10
|
97
|
Chris@10
|
98 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include r2cbIII.h */
|
Chris@10
|
99
|
Chris@10
|
100 /*
|
Chris@10
|
101 * This function contains 24 FP additions, 19 FP multiplications,
|
Chris@10
|
102 * (or, 9 additions, 4 multiplications, 15 fused multiply/add),
|
Chris@10
|
103 * 21 stack variables, 7 constants, and 14 memory accesses
|
Chris@10
|
104 */
|
Chris@10
|
105 #include "r2cbIII.h"
|
Chris@10
|
106
|
Chris@10
|
107 static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
108 {
|
Chris@10
|
109 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
Chris@10
|
110 DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
|
Chris@10
|
111 DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
|
Chris@10
|
112 DK(KP445041867, +0.445041867912628808577805128993589518932711138);
|
Chris@10
|
113 DK(KP867767478, +0.867767478235116240951536665696717509219981456);
|
Chris@10
|
114 DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
|
Chris@10
|
115 DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
|
Chris@10
|
116 {
|
Chris@10
|
117 INT i;
|
Chris@10
|
118 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
|
Chris@10
|
119 E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7;
|
Chris@10
|
120 T6 = Ci[WS(csi, 2)];
|
Chris@10
|
121 T8 = Ci[0];
|
Chris@10
|
122 T7 = Ci[WS(csi, 1)];
|
Chris@10
|
123 T9 = FMA(KP1_563662964, T6, KP1_949855824 * T7) + (KP867767478 * T8);
|
Chris@10
|
124 Td = FNMS(KP1_949855824, T8, KP1_563662964 * T7) - (KP867767478 * T6);
|
Chris@10
|
125 Tb = FNMS(KP1_563662964, T8, KP1_949855824 * T6) - (KP867767478 * T7);
|
Chris@10
|
126 T1 = Cr[WS(csr, 3)];
|
Chris@10
|
127 T4 = Cr[0];
|
Chris@10
|
128 T2 = Cr[WS(csr, 2)];
|
Chris@10
|
129 T3 = Cr[WS(csr, 1)];
|
Chris@10
|
130 T5 = FMA(KP445041867, T3, KP1_801937735 * T4) + FNMA(KP1_246979603, T2, T1);
|
Chris@10
|
131 Tc = FMA(KP1_801937735, T2, KP445041867 * T4) + FNMA(KP1_246979603, T3, T1);
|
Chris@10
|
132 Ta = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2);
|
Chris@10
|
133 R1[0] = T5 - T9;
|
Chris@10
|
134 R0[WS(rs, 3)] = -(T5 + T9);
|
Chris@10
|
135 R0[WS(rs, 2)] = Td - Tc;
|
Chris@10
|
136 R1[WS(rs, 1)] = Tc + Td;
|
Chris@10
|
137 R1[WS(rs, 2)] = Tb - Ta;
|
Chris@10
|
138 R0[WS(rs, 1)] = Ta + Tb;
|
Chris@10
|
139 R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1);
|
Chris@10
|
140 }
|
Chris@10
|
141 }
|
Chris@10
|
142 }
|
Chris@10
|
143
|
Chris@10
|
144 static const kr2c_desc desc = { 7, "r2cbIII_7", {9, 4, 15, 0}, &GENUS };
|
Chris@10
|
145
|
Chris@10
|
146 void X(codelet_r2cbIII_7) (planner *p) {
|
Chris@10
|
147 X(kr2c_register) (p, r2cbIII_7, &desc);
|
Chris@10
|
148 }
|
Chris@10
|
149
|
Chris@10
|
150 #endif /* HAVE_FMA */
|