annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_7.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:33 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include r2cbIII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 24 FP additions, 22 FP multiplications,
Chris@10 32 * (or, 2 additions, 0 multiplications, 22 fused multiply/add),
Chris@10 33 * 31 stack variables, 7 constants, and 14 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cbIII.h"
Chris@10 36
Chris@10 37 static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
Chris@10 40 DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
Chris@10 41 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 42 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 43 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 45 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 46 {
Chris@10 47 INT i;
Chris@10 48 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
Chris@10 49 E Tn, Td, Tg, Ti, Tl, T8;
Chris@10 50 {
Chris@10 51 E T1, T9, Tb, Ta, T2, T4, Th, Tm, Tc, T3, Te;
Chris@10 52 T1 = Cr[WS(csr, 3)];
Chris@10 53 T9 = Ci[WS(csi, 1)];
Chris@10 54 Tb = Ci[0];
Chris@10 55 Ta = Ci[WS(csi, 2)];
Chris@10 56 T2 = Cr[WS(csr, 2)];
Chris@10 57 T4 = Cr[0];
Chris@10 58 Th = FMA(KP554958132, T9, Tb);
Chris@10 59 Tm = FNMS(KP554958132, Ta, T9);
Chris@10 60 Tc = FMA(KP554958132, Tb, Ta);
Chris@10 61 T3 = Cr[WS(csr, 1)];
Chris@10 62 Te = FNMS(KP356895867, T2, T4);
Chris@10 63 Tn = FNMS(KP801937735, Tm, Tb);
Chris@10 64 {
Chris@10 65 E Tf, Tk, T7, T5, Tj, T6;
Chris@10 66 Td = FMA(KP801937735, Tc, T9);
Chris@10 67 T5 = T2 + T3 + T4;
Chris@10 68 Tj = FNMS(KP356895867, T4, T3);
Chris@10 69 T6 = FNMS(KP356895867, T3, T2);
Chris@10 70 Tf = FNMS(KP692021471, Te, T3);
Chris@10 71 R0[0] = FMA(KP2_000000000, T5, T1);
Chris@10 72 Tk = FNMS(KP692021471, Tj, T2);
Chris@10 73 T7 = FNMS(KP692021471, T6, T4);
Chris@10 74 Tg = FNMS(KP1_801937735, Tf, T1);
Chris@10 75 Ti = FNMS(KP801937735, Th, Ta);
Chris@10 76 Tl = FNMS(KP1_801937735, Tk, T1);
Chris@10 77 T8 = FNMS(KP1_801937735, T7, T1);
Chris@10 78 }
Chris@10 79 }
Chris@10 80 R1[WS(rs, 2)] = FMS(KP1_949855824, Ti, Tg);
Chris@10 81 R0[WS(rs, 1)] = FMA(KP1_949855824, Ti, Tg);
Chris@10 82 R0[WS(rs, 2)] = FNMS(KP1_949855824, Tn, Tl);
Chris@10 83 R1[WS(rs, 1)] = -(FMA(KP1_949855824, Tn, Tl));
Chris@10 84 R0[WS(rs, 3)] = FNMS(KP1_949855824, Td, T8);
Chris@10 85 R1[0] = -(FMA(KP1_949855824, Td, T8));
Chris@10 86 }
Chris@10 87 }
Chris@10 88 }
Chris@10 89
Chris@10 90 static const kr2c_desc desc = { 7, "r2cbIII_7", {2, 0, 22, 0}, &GENUS };
Chris@10 91
Chris@10 92 void X(codelet_r2cbIII_7) (planner *p) {
Chris@10 93 X(kr2c_register) (p, r2cbIII_7, &desc);
Chris@10 94 }
Chris@10 95
Chris@10 96 #else /* HAVE_FMA */
Chris@10 97
Chris@10 98 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include r2cbIII.h */
Chris@10 99
Chris@10 100 /*
Chris@10 101 * This function contains 24 FP additions, 19 FP multiplications,
Chris@10 102 * (or, 9 additions, 4 multiplications, 15 fused multiply/add),
Chris@10 103 * 21 stack variables, 7 constants, and 14 memory accesses
Chris@10 104 */
Chris@10 105 #include "r2cbIII.h"
Chris@10 106
Chris@10 107 static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 108 {
Chris@10 109 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 110 DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
Chris@10 111 DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
Chris@10 112 DK(KP445041867, +0.445041867912628808577805128993589518932711138);
Chris@10 113 DK(KP867767478, +0.867767478235116240951536665696717509219981456);
Chris@10 114 DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
Chris@10 115 DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
Chris@10 116 {
Chris@10 117 INT i;
Chris@10 118 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
Chris@10 119 E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7;
Chris@10 120 T6 = Ci[WS(csi, 2)];
Chris@10 121 T8 = Ci[0];
Chris@10 122 T7 = Ci[WS(csi, 1)];
Chris@10 123 T9 = FMA(KP1_563662964, T6, KP1_949855824 * T7) + (KP867767478 * T8);
Chris@10 124 Td = FNMS(KP1_949855824, T8, KP1_563662964 * T7) - (KP867767478 * T6);
Chris@10 125 Tb = FNMS(KP1_563662964, T8, KP1_949855824 * T6) - (KP867767478 * T7);
Chris@10 126 T1 = Cr[WS(csr, 3)];
Chris@10 127 T4 = Cr[0];
Chris@10 128 T2 = Cr[WS(csr, 2)];
Chris@10 129 T3 = Cr[WS(csr, 1)];
Chris@10 130 T5 = FMA(KP445041867, T3, KP1_801937735 * T4) + FNMA(KP1_246979603, T2, T1);
Chris@10 131 Tc = FMA(KP1_801937735, T2, KP445041867 * T4) + FNMA(KP1_246979603, T3, T1);
Chris@10 132 Ta = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2);
Chris@10 133 R1[0] = T5 - T9;
Chris@10 134 R0[WS(rs, 3)] = -(T5 + T9);
Chris@10 135 R0[WS(rs, 2)] = Td - Tc;
Chris@10 136 R1[WS(rs, 1)] = Tc + Td;
Chris@10 137 R1[WS(rs, 2)] = Tb - Ta;
Chris@10 138 R0[WS(rs, 1)] = Ta + Tb;
Chris@10 139 R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1);
Chris@10 140 }
Chris@10 141 }
Chris@10 142 }
Chris@10 143
Chris@10 144 static const kr2c_desc desc = { 7, "r2cbIII_7", {9, 4, 15, 0}, &GENUS };
Chris@10 145
Chris@10 146 void X(codelet_r2cbIII_7) (planner *p) {
Chris@10 147 X(kr2c_register) (p, r2cbIII_7, &desc);
Chris@10 148 }
Chris@10 149
Chris@10 150 #endif /* HAVE_FMA */