annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_20.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:44 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include r2cbIII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 94 FP additions, 56 FP multiplications,
Chris@10 32 * (or, 58 additions, 20 multiplications, 36 fused multiply/add),
Chris@10 33 * 59 stack variables, 6 constants, and 40 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cbIII.h"
Chris@10 36
Chris@10 37 static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
Chris@10 40 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 42 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 43 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 44 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 45 {
Chris@10 46 INT i;
Chris@10 47 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
Chris@10 48 E TZ, TD, TW, Tw, Tt, TF, T1f, T1b;
Chris@10 49 {
Chris@10 50 E T1l, Tk, T9, Tj, Ta, TV, TI, Ts, TU, T1t, T11, Tx, T13, TC, T1a;
Chris@10 51 E T1i, Th, Tv, Ty;
Chris@10 52 {
Chris@10 53 E TQ, TS, Tr, Tm, Tn;
Chris@10 54 {
Chris@10 55 E T1, T5, T6, T2, T3, T7, TY;
Chris@10 56 T1 = Cr[WS(csr, 2)];
Chris@10 57 T5 = Cr[WS(csr, 9)];
Chris@10 58 T6 = Cr[WS(csr, 5)];
Chris@10 59 T2 = Cr[WS(csr, 6)];
Chris@10 60 T3 = Cr[WS(csr, 1)];
Chris@10 61 TQ = Ci[WS(csi, 2)];
Chris@10 62 T7 = T5 + T6;
Chris@10 63 TY = T5 - T6;
Chris@10 64 {
Chris@10 65 E T4, TX, T8, Tp, Tq;
Chris@10 66 T4 = T2 + T3;
Chris@10 67 TX = T2 - T3;
Chris@10 68 Tp = Ci[WS(csi, 5)];
Chris@10 69 Tq = Ci[WS(csi, 9)];
Chris@10 70 T1l = FNMS(KP618033988, TX, TY);
Chris@10 71 TZ = FMA(KP618033988, TY, TX);
Chris@10 72 Tk = T4 - T7;
Chris@10 73 T8 = T4 + T7;
Chris@10 74 TS = Tp + Tq;
Chris@10 75 Tr = Tp - Tq;
Chris@10 76 T9 = T1 + T8;
Chris@10 77 Tj = FNMS(KP250000000, T8, T1);
Chris@10 78 Tm = Ci[WS(csi, 6)];
Chris@10 79 Tn = Ci[WS(csi, 1)];
Chris@10 80 }
Chris@10 81 }
Chris@10 82 {
Chris@10 83 E Tb, T19, Tg, Tc;
Chris@10 84 Ta = Cr[WS(csr, 7)];
Chris@10 85 {
Chris@10 86 E Te, Tf, To, TR, TT;
Chris@10 87 Te = Cr[0];
Chris@10 88 Tf = Cr[WS(csr, 4)];
Chris@10 89 To = Tm + Tn;
Chris@10 90 TR = Tm - Tn;
Chris@10 91 Tb = Cr[WS(csr, 3)];
Chris@10 92 T19 = Te - Tf;
Chris@10 93 Tg = Te + Tf;
Chris@10 94 TT = TR - TS;
Chris@10 95 TV = TR + TS;
Chris@10 96 TI = FNMS(KP618033988, To, Tr);
Chris@10 97 Ts = FMA(KP618033988, Tr, To);
Chris@10 98 TU = FNMS(KP250000000, TT, TQ);
Chris@10 99 T1t = TT + TQ;
Chris@10 100 Tc = Cr[WS(csr, 8)];
Chris@10 101 }
Chris@10 102 T11 = Ci[WS(csi, 7)];
Chris@10 103 {
Chris@10 104 E TA, TB, Td, T18;
Chris@10 105 TA = Ci[WS(csi, 4)];
Chris@10 106 TB = Ci[0];
Chris@10 107 Td = Tb + Tc;
Chris@10 108 T18 = Tb - Tc;
Chris@10 109 Tx = Ci[WS(csi, 3)];
Chris@10 110 T13 = TB + TA;
Chris@10 111 TC = TA - TB;
Chris@10 112 T1a = FMA(KP618033988, T19, T18);
Chris@10 113 T1i = FNMS(KP618033988, T18, T19);
Chris@10 114 Th = Td + Tg;
Chris@10 115 Tv = Td - Tg;
Chris@10 116 Ty = Ci[WS(csi, 8)];
Chris@10 117 }
Chris@10 118 }
Chris@10 119 }
Chris@10 120 {
Chris@10 121 E Tu, T1w, T16, TL, T15, T1u;
Chris@10 122 {
Chris@10 123 E Ti, T12, Tz, T14;
Chris@10 124 Tu = FNMS(KP250000000, Th, Ta);
Chris@10 125 Ti = Ta + Th;
Chris@10 126 T12 = Tx - Ty;
Chris@10 127 Tz = Tx + Ty;
Chris@10 128 T1w = T9 - Ti;
Chris@10 129 T14 = T12 - T13;
Chris@10 130 T16 = T12 + T13;
Chris@10 131 TL = FNMS(KP618033988, Tz, TC);
Chris@10 132 TD = FMA(KP618033988, TC, Tz);
Chris@10 133 T15 = FNMS(KP250000000, T14, T11);
Chris@10 134 T1u = T14 + T11;
Chris@10 135 R0[0] = KP2_000000000 * (T9 + Ti);
Chris@10 136 }
Chris@10 137 {
Chris@10 138 E Tl, TJ, TN, T1q, T1m, TK, T1h, T17, TH, T1k, T1v;
Chris@10 139 Tl = FMA(KP559016994, Tk, Tj);
Chris@10 140 TH = FNMS(KP559016994, Tk, Tj);
Chris@10 141 T1k = FNMS(KP559016994, TV, TU);
Chris@10 142 TW = FMA(KP559016994, TV, TU);
Chris@10 143 R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t);
Chris@10 144 T1v = T1t + T1u;
Chris@10 145 TJ = FNMS(KP951056516, TI, TH);
Chris@10 146 TN = FMA(KP951056516, TI, TH);
Chris@10 147 T1q = FMA(KP951056516, T1l, T1k);
Chris@10 148 T1m = FNMS(KP951056516, T1l, T1k);
Chris@10 149 R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v);
Chris@10 150 R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w);
Chris@10 151 Tw = FMA(KP559016994, Tv, Tu);
Chris@10 152 TK = FNMS(KP559016994, Tv, Tu);
Chris@10 153 T1h = FNMS(KP559016994, T16, T15);
Chris@10 154 T17 = FMA(KP559016994, T16, T15);
Chris@10 155 {
Chris@10 156 E TM, TO, T1j, T1r;
Chris@10 157 TM = FMA(KP951056516, TL, TK);
Chris@10 158 TO = FNMS(KP951056516, TL, TK);
Chris@10 159 T1j = FMA(KP951056516, T1i, T1h);
Chris@10 160 T1r = FNMS(KP951056516, T1i, T1h);
Chris@10 161 Tt = FNMS(KP951056516, Ts, Tl);
Chris@10 162 TF = FMA(KP951056516, Ts, Tl);
Chris@10 163 {
Chris@10 164 E T1n, T1p, T1s, T1o;
Chris@10 165 T1n = TN - TO;
Chris@10 166 R0[WS(rs, 6)] = -(KP2_000000000 * (TN + TO));
Chris@10 167 T1p = TM - TJ;
Chris@10 168 R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM);
Chris@10 169 T1s = T1q + T1r;
Chris@10 170 R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q);
Chris@10 171 T1o = T1m + T1j;
Chris@10 172 R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m);
Chris@10 173 R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s);
Chris@10 174 R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s);
Chris@10 175 R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o);
Chris@10 176 R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o);
Chris@10 177 T1f = FMA(KP951056516, T1a, T17);
Chris@10 178 T1b = FNMS(KP951056516, T1a, T17);
Chris@10 179 }
Chris@10 180 }
Chris@10 181 }
Chris@10 182 }
Chris@10 183 }
Chris@10 184 {
Chris@10 185 E TE, TG, T10, T1e;
Chris@10 186 TE = FMA(KP951056516, TD, Tw);
Chris@10 187 TG = FNMS(KP951056516, TD, Tw);
Chris@10 188 T10 = FMA(KP951056516, TZ, TW);
Chris@10 189 T1e = FNMS(KP951056516, TZ, TW);
Chris@10 190 {
Chris@10 191 E T1d, TP, T1g, T1c;
Chris@10 192 T1d = TF - TG;
Chris@10 193 R0[WS(rs, 2)] = -(KP2_000000000 * (TF + TG));
Chris@10 194 TP = Tt - TE;
Chris@10 195 R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE);
Chris@10 196 T1g = T1e + T1f;
Chris@10 197 R0[WS(rs, 7)] = KP2_000000000 * (T1e - T1f);
Chris@10 198 T1c = T10 + T1b;
Chris@10 199 R0[WS(rs, 3)] = KP2_000000000 * (T10 - T1b);
Chris@10 200 R1[WS(rs, 9)] = -(KP1_414213562 * (T1d + T1g));
Chris@10 201 R1[WS(rs, 4)] = KP1_414213562 * (T1d - T1g);
Chris@10 202 R1[WS(rs, 5)] = -(KP1_414213562 * (TP + T1c));
Chris@10 203 R1[0] = KP1_414213562 * (TP - T1c);
Chris@10 204 }
Chris@10 205 }
Chris@10 206 }
Chris@10 207 }
Chris@10 208 }
Chris@10 209
Chris@10 210 static const kr2c_desc desc = { 20, "r2cbIII_20", {58, 20, 36, 0}, &GENUS };
Chris@10 211
Chris@10 212 void X(codelet_r2cbIII_20) (planner *p) {
Chris@10 213 X(kr2c_register) (p, r2cbIII_20, &desc);
Chris@10 214 }
Chris@10 215
Chris@10 216 #else /* HAVE_FMA */
Chris@10 217
Chris@10 218 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include r2cbIII.h */
Chris@10 219
Chris@10 220 /*
Chris@10 221 * This function contains 94 FP additions, 44 FP multiplications,
Chris@10 222 * (or, 82 additions, 32 multiplications, 12 fused multiply/add),
Chris@10 223 * 43 stack variables, 6 constants, and 40 memory accesses
Chris@10 224 */
Chris@10 225 #include "r2cbIII.h"
Chris@10 226
Chris@10 227 static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 228 {
Chris@10 229 DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
Chris@10 230 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 231 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 232 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 233 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 234 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 235 {
Chris@10 236 INT i;
Chris@10 237 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
Chris@10 238 E T1, Tj, T1k, T13, T8, Tk, T17, Ts, T16, TI, T18, T19, Ta, Tu, T1i;
Chris@10 239 E TS, Th, Tv, TX, TD, TV, TL, TW, TY;
Chris@10 240 {
Chris@10 241 E T7, T12, T4, T11;
Chris@10 242 T1 = Cr[WS(csr, 2)];
Chris@10 243 {
Chris@10 244 E T5, T6, T2, T3;
Chris@10 245 T5 = Cr[WS(csr, 9)];
Chris@10 246 T6 = Cr[WS(csr, 5)];
Chris@10 247 T7 = T5 + T6;
Chris@10 248 T12 = T5 - T6;
Chris@10 249 T2 = Cr[WS(csr, 6)];
Chris@10 250 T3 = Cr[WS(csr, 1)];
Chris@10 251 T4 = T2 + T3;
Chris@10 252 T11 = T2 - T3;
Chris@10 253 }
Chris@10 254 Tj = KP559016994 * (T4 - T7);
Chris@10 255 T1k = FNMS(KP951056516, T12, KP587785252 * T11);
Chris@10 256 T13 = FMA(KP951056516, T11, KP587785252 * T12);
Chris@10 257 T8 = T4 + T7;
Chris@10 258 Tk = FNMS(KP250000000, T8, T1);
Chris@10 259 }
Chris@10 260 {
Chris@10 261 E Tr, T15, To, T14;
Chris@10 262 T17 = Ci[WS(csi, 2)];
Chris@10 263 {
Chris@10 264 E Tp, Tq, Tm, Tn;
Chris@10 265 Tp = Ci[WS(csi, 5)];
Chris@10 266 Tq = Ci[WS(csi, 9)];
Chris@10 267 Tr = Tp - Tq;
Chris@10 268 T15 = Tp + Tq;
Chris@10 269 Tm = Ci[WS(csi, 6)];
Chris@10 270 Tn = Ci[WS(csi, 1)];
Chris@10 271 To = Tm + Tn;
Chris@10 272 T14 = Tm - Tn;
Chris@10 273 }
Chris@10 274 Ts = FMA(KP951056516, To, KP587785252 * Tr);
Chris@10 275 T16 = KP559016994 * (T14 + T15);
Chris@10 276 TI = FNMS(KP951056516, Tr, KP587785252 * To);
Chris@10 277 T18 = T14 - T15;
Chris@10 278 T19 = FNMS(KP250000000, T18, T17);
Chris@10 279 }
Chris@10 280 {
Chris@10 281 E Tg, TR, Td, TQ;
Chris@10 282 Ta = Cr[WS(csr, 7)];
Chris@10 283 {
Chris@10 284 E Te, Tf, Tb, Tc;
Chris@10 285 Te = Cr[0];
Chris@10 286 Tf = Cr[WS(csr, 4)];
Chris@10 287 Tg = Te + Tf;
Chris@10 288 TR = Te - Tf;
Chris@10 289 Tb = Cr[WS(csr, 3)];
Chris@10 290 Tc = Cr[WS(csr, 8)];
Chris@10 291 Td = Tb + Tc;
Chris@10 292 TQ = Tb - Tc;
Chris@10 293 }
Chris@10 294 Tu = KP559016994 * (Td - Tg);
Chris@10 295 T1i = FNMS(KP951056516, TR, KP587785252 * TQ);
Chris@10 296 TS = FMA(KP951056516, TQ, KP587785252 * TR);
Chris@10 297 Th = Td + Tg;
Chris@10 298 Tv = FNMS(KP250000000, Th, Ta);
Chris@10 299 }
Chris@10 300 {
Chris@10 301 E TC, TU, Tz, TT;
Chris@10 302 TX = Ci[WS(csi, 7)];
Chris@10 303 {
Chris@10 304 E TA, TB, Tx, Ty;
Chris@10 305 TA = Ci[WS(csi, 4)];
Chris@10 306 TB = Ci[0];
Chris@10 307 TC = TA - TB;
Chris@10 308 TU = TB + TA;
Chris@10 309 Tx = Ci[WS(csi, 3)];
Chris@10 310 Ty = Ci[WS(csi, 8)];
Chris@10 311 Tz = Tx + Ty;
Chris@10 312 TT = Ty - Tx;
Chris@10 313 }
Chris@10 314 TD = FMA(KP951056516, Tz, KP587785252 * TC);
Chris@10 315 TV = KP559016994 * (TT - TU);
Chris@10 316 TL = FNMS(KP587785252, Tz, KP951056516 * TC);
Chris@10 317 TW = TT + TU;
Chris@10 318 TY = FMA(KP250000000, TW, TX);
Chris@10 319 }
Chris@10 320 {
Chris@10 321 E T9, Ti, T1w, T1t, T1u, T1v;
Chris@10 322 T9 = T1 + T8;
Chris@10 323 Ti = Ta + Th;
Chris@10 324 T1w = T9 - Ti;
Chris@10 325 T1t = T18 + T17;
Chris@10 326 T1u = TX - TW;
Chris@10 327 T1v = T1t + T1u;
Chris@10 328 R0[0] = KP2_000000000 * (T9 + Ti);
Chris@10 329 R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t);
Chris@10 330 R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w);
Chris@10 331 R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v);
Chris@10 332 }
Chris@10 333 {
Chris@10 334 E TJ, TO, T1m, T1q, TM, TN, T1j, T1r;
Chris@10 335 {
Chris@10 336 E TH, T1l, TK, T1h;
Chris@10 337 TH = Tk - Tj;
Chris@10 338 TJ = TH + TI;
Chris@10 339 TO = TH - TI;
Chris@10 340 T1l = T19 - T16;
Chris@10 341 T1m = T1k + T1l;
Chris@10 342 T1q = T1l - T1k;
Chris@10 343 TK = Tv - Tu;
Chris@10 344 TM = TK + TL;
Chris@10 345 TN = TL - TK;
Chris@10 346 T1h = TV + TY;
Chris@10 347 T1j = T1h - T1i;
Chris@10 348 T1r = T1i + T1h;
Chris@10 349 }
Chris@10 350 R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM);
Chris@10 351 R0[WS(rs, 6)] = KP2_000000000 * (TN - TO);
Chris@10 352 R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q);
Chris@10 353 R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m);
Chris@10 354 {
Chris@10 355 E T1p, T1s, T1n, T1o;
Chris@10 356 T1p = TM - TJ;
Chris@10 357 T1s = T1q + T1r;
Chris@10 358 R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s);
Chris@10 359 R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s);
Chris@10 360 T1n = TO + TN;
Chris@10 361 T1o = T1m + T1j;
Chris@10 362 R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o);
Chris@10 363 R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o);
Chris@10 364 }
Chris@10 365 }
Chris@10 366 {
Chris@10 367 E Tt, TG, T1b, T1f, TE, TF, T10, T1e;
Chris@10 368 {
Chris@10 369 E Tl, T1a, Tw, TZ;
Chris@10 370 Tl = Tj + Tk;
Chris@10 371 Tt = Tl - Ts;
Chris@10 372 TG = Tl + Ts;
Chris@10 373 T1a = T16 + T19;
Chris@10 374 T1b = T13 + T1a;
Chris@10 375 T1f = T1a - T13;
Chris@10 376 Tw = Tu + Tv;
Chris@10 377 TE = Tw + TD;
Chris@10 378 TF = TD - Tw;
Chris@10 379 TZ = TV - TY;
Chris@10 380 T10 = TS + TZ;
Chris@10 381 T1e = TZ - TS;
Chris@10 382 }
Chris@10 383 R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE);
Chris@10 384 R0[WS(rs, 2)] = KP2_000000000 * (TF - TG);
Chris@10 385 R0[WS(rs, 7)] = KP2_000000000 * (T1f + T1e);
Chris@10 386 R0[WS(rs, 3)] = KP2_000000000 * (T1b + T10);
Chris@10 387 {
Chris@10 388 E T1d, T1g, TP, T1c;
Chris@10 389 T1d = TG + TF;
Chris@10 390 T1g = T1e - T1f;
Chris@10 391 R1[WS(rs, 4)] = KP1_414213562 * (T1d + T1g);
Chris@10 392 R1[WS(rs, 9)] = KP1_414213562 * (T1g - T1d);
Chris@10 393 TP = Tt - TE;
Chris@10 394 T1c = T10 - T1b;
Chris@10 395 R1[0] = KP1_414213562 * (TP + T1c);
Chris@10 396 R1[WS(rs, 5)] = KP1_414213562 * (T1c - TP);
Chris@10 397 }
Chris@10 398 }
Chris@10 399 }
Chris@10 400 }
Chris@10 401 }
Chris@10 402
Chris@10 403 static const kr2c_desc desc = { 20, "r2cbIII_20", {82, 32, 12, 0}, &GENUS };
Chris@10 404
Chris@10 405 void X(codelet_r2cbIII_20) (planner *p) {
Chris@10 406 X(kr2c_register) (p, r2cbIII_20, &desc);
Chris@10 407 }
Chris@10 408
Chris@10 409 #endif /* HAVE_FMA */