annotate src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_15.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:36 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include r2cbIII.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 64 FP additions, 43 FP multiplications,
Chris@10 32 * (or, 21 additions, 0 multiplications, 43 fused multiply/add),
Chris@10 33 * 48 stack variables, 9 constants, and 30 memory accesses
Chris@10 34 */
Chris@10 35 #include "r2cbIII.h"
Chris@10 36
Chris@10 37 static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 40 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@10 41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 43 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@10 44 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@10 45 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 46 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 47 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 48 {
Chris@10 49 INT i;
Chris@10 50 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
Chris@10 51 E TX, Tv, To, TW, Tl, Tx, Ty, Tw;
Chris@10 52 {
Chris@10 53 E TA, Tk, T6, T5, Tz, Th, TI, Tp, Tu, TK, TR, Tn, Td, Tq;
Chris@10 54 {
Chris@10 55 E T1, T2, T3, Ti, Tj;
Chris@10 56 Ti = Ci[WS(csi, 4)];
Chris@10 57 Tj = Ci[WS(csi, 1)];
Chris@10 58 T1 = Cr[WS(csr, 7)];
Chris@10 59 T2 = Cr[WS(csr, 4)];
Chris@10 60 T3 = Cr[WS(csr, 1)];
Chris@10 61 TA = FNMS(KP618033988, Ti, Tj);
Chris@10 62 Tk = FMA(KP618033988, Tj, Ti);
Chris@10 63 {
Chris@10 64 E T7, TP, Tc, T8;
Chris@10 65 T6 = Cr[WS(csr, 2)];
Chris@10 66 {
Chris@10 67 E T4, Tg, Ta, Tb, Tf;
Chris@10 68 T4 = T2 + T3;
Chris@10 69 Tg = T2 - T3;
Chris@10 70 Ta = Cr[WS(csr, 3)];
Chris@10 71 Tb = Cr[WS(csr, 6)];
Chris@10 72 T7 = Cr[0];
Chris@10 73 Tf = FNMS(KP500000000, T4, T1);
Chris@10 74 T5 = FMA(KP2_000000000, T4, T1);
Chris@10 75 TP = Ta - Tb;
Chris@10 76 Tc = Ta + Tb;
Chris@10 77 Tz = FNMS(KP1_118033988, Tg, Tf);
Chris@10 78 Th = FMA(KP1_118033988, Tg, Tf);
Chris@10 79 T8 = Cr[WS(csr, 5)];
Chris@10 80 }
Chris@10 81 TI = Ci[WS(csi, 2)];
Chris@10 82 {
Chris@10 83 E Ts, Tt, TQ, T9;
Chris@10 84 Ts = Ci[WS(csi, 3)];
Chris@10 85 Tt = Ci[WS(csi, 6)];
Chris@10 86 TQ = T7 - T8;
Chris@10 87 T9 = T7 + T8;
Chris@10 88 Tp = Ci[0];
Chris@10 89 Tu = Ts - Tt;
Chris@10 90 TK = Ts + Tt;
Chris@10 91 TX = FMA(KP618033988, TP, TQ);
Chris@10 92 TR = FNMS(KP618033988, TQ, TP);
Chris@10 93 Tn = T9 - Tc;
Chris@10 94 Td = T9 + Tc;
Chris@10 95 Tq = Ci[WS(csi, 5)];
Chris@10 96 }
Chris@10 97 }
Chris@10 98 }
Chris@10 99 {
Chris@10 100 E TB, TF, TO, TG, TE;
Chris@10 101 {
Chris@10 102 E Tm, T11, TN, TD, TM, T12, TC;
Chris@10 103 TB = FNMS(KP1_902113032, TA, Tz);
Chris@10 104 TF = FMA(KP1_902113032, TA, Tz);
Chris@10 105 {
Chris@10 106 E Te, Tr, TJ, TL;
Chris@10 107 Tm = FNMS(KP250000000, Td, T6);
Chris@10 108 Te = T6 + Td;
Chris@10 109 Tr = Tp + Tq;
Chris@10 110 TJ = Tq - Tp;
Chris@10 111 R0[0] = FMA(KP2_000000000, Te, T5);
Chris@10 112 T11 = Te - T5;
Chris@10 113 TN = TJ + TK;
Chris@10 114 TL = TJ - TK;
Chris@10 115 Tv = FMA(KP618033988, Tu, Tr);
Chris@10 116 TD = FNMS(KP618033988, Tr, Tu);
Chris@10 117 TM = FNMS(KP250000000, TL, TI);
Chris@10 118 T12 = TL + TI;
Chris@10 119 }
Chris@10 120 TC = FNMS(KP559016994, Tn, Tm);
Chris@10 121 To = FMA(KP559016994, Tn, Tm);
Chris@10 122 R1[WS(rs, 2)] = FMA(KP1_732050807, T12, T11);
Chris@10 123 R0[WS(rs, 5)] = FMS(KP1_732050807, T12, T11);
Chris@10 124 TW = FMA(KP559016994, TN, TM);
Chris@10 125 TO = FNMS(KP559016994, TN, TM);
Chris@10 126 TG = FNMS(KP951056516, TD, TC);
Chris@10 127 TE = FMA(KP951056516, TD, TC);
Chris@10 128 }
Chris@10 129 Tl = FNMS(KP1_902113032, Tk, Th);
Chris@10 130 Tx = FMA(KP1_902113032, Tk, Th);
Chris@10 131 {
Chris@10 132 E TS, TU, TT, TH;
Chris@10 133 TS = FMA(KP951056516, TR, TO);
Chris@10 134 TU = FNMS(KP951056516, TR, TO);
Chris@10 135 TT = TF - TG;
Chris@10 136 R1[WS(rs, 1)] = -(FMA(KP2_000000000, TG, TF));
Chris@10 137 TH = TB - TE;
Chris@10 138 R0[WS(rs, 6)] = FMA(KP2_000000000, TE, TB);
Chris@10 139 R1[WS(rs, 6)] = -(FMA(KP1_732050807, TU, TT));
Chris@10 140 R0[WS(rs, 4)] = FNMS(KP1_732050807, TU, TT);
Chris@10 141 R1[WS(rs, 3)] = -(FMA(KP1_732050807, TS, TH));
Chris@10 142 R0[WS(rs, 1)] = FNMS(KP1_732050807, TS, TH);
Chris@10 143 }
Chris@10 144 }
Chris@10 145 }
Chris@10 146 Ty = FNMS(KP951056516, Tv, To);
Chris@10 147 Tw = FMA(KP951056516, Tv, To);
Chris@10 148 {
Chris@10 149 E T10, TY, TV, TZ;
Chris@10 150 T10 = FMA(KP951056516, TX, TW);
Chris@10 151 TY = FNMS(KP951056516, TX, TW);
Chris@10 152 TV = Ty - Tx;
Chris@10 153 R0[WS(rs, 3)] = FMA(KP2_000000000, Ty, Tx);
Chris@10 154 TZ = Tl - Tw;
Chris@10 155 R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tw, Tl));
Chris@10 156 R1[WS(rs, 5)] = FMA(KP1_732050807, TY, TV);
Chris@10 157 R1[0] = FNMS(KP1_732050807, TY, TV);
Chris@10 158 R0[WS(rs, 2)] = FMA(KP1_732050807, T10, TZ);
Chris@10 159 R0[WS(rs, 7)] = FNMS(KP1_732050807, T10, TZ);
Chris@10 160 }
Chris@10 161 }
Chris@10 162 }
Chris@10 163 }
Chris@10 164
Chris@10 165 static const kr2c_desc desc = { 15, "r2cbIII_15", {21, 0, 43, 0}, &GENUS };
Chris@10 166
Chris@10 167 void X(codelet_r2cbIII_15) (planner *p) {
Chris@10 168 X(kr2c_register) (p, r2cbIII_15, &desc);
Chris@10 169 }
Chris@10 170
Chris@10 171 #else /* HAVE_FMA */
Chris@10 172
Chris@10 173 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include r2cbIII.h */
Chris@10 174
Chris@10 175 /*
Chris@10 176 * This function contains 64 FP additions, 26 FP multiplications,
Chris@10 177 * (or, 49 additions, 11 multiplications, 15 fused multiply/add),
Chris@10 178 * 47 stack variables, 14 constants, and 30 memory accesses
Chris@10 179 */
Chris@10 180 #include "r2cbIII.h"
Chris@10 181
Chris@10 182 static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@10 183 {
Chris@10 184 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@10 185 DK(KP433012701, +0.433012701892219323381861585376468091735701313);
Chris@10 186 DK(KP968245836, +0.968245836551854221294816349945599902708230426);
Chris@10 187 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 188 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 189 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 190 DK(KP1_647278207, +1.647278207092663851754840078556380006059321028);
Chris@10 191 DK(KP1_018073920, +1.018073920910254366901961726787815297021466329);
Chris@10 192 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 193 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 194 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@10 195 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@10 196 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
Chris@10 197 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@10 198 {
Chris@10 199 INT i;
Chris@10 200 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
Chris@10 201 E Tv, TD, T5, Ts, TC, T6, Tf, TW, TK, Td, Tg, TP, To, TN, TA;
Chris@10 202 E TO, TQ, Tt, Tu, T12, Te, T11;
Chris@10 203 Tt = Ci[WS(csi, 4)];
Chris@10 204 Tu = Ci[WS(csi, 1)];
Chris@10 205 Tv = FMA(KP1_902113032, Tt, KP1_175570504 * Tu);
Chris@10 206 TD = FNMS(KP1_175570504, Tt, KP1_902113032 * Tu);
Chris@10 207 {
Chris@10 208 E T1, T4, Tq, T2, T3, Tr;
Chris@10 209 T1 = Cr[WS(csr, 7)];
Chris@10 210 T2 = Cr[WS(csr, 4)];
Chris@10 211 T3 = Cr[WS(csr, 1)];
Chris@10 212 T4 = T2 + T3;
Chris@10 213 Tq = KP1_118033988 * (T2 - T3);
Chris@10 214 T5 = FMA(KP2_000000000, T4, T1);
Chris@10 215 Tr = FNMS(KP500000000, T4, T1);
Chris@10 216 Ts = Tq + Tr;
Chris@10 217 TC = Tr - Tq;
Chris@10 218 }
Chris@10 219 {
Chris@10 220 E Tc, TJ, T9, TI;
Chris@10 221 T6 = Cr[WS(csr, 2)];
Chris@10 222 {
Chris@10 223 E Ta, Tb, T7, T8;
Chris@10 224 Ta = Cr[WS(csr, 3)];
Chris@10 225 Tb = Cr[WS(csr, 6)];
Chris@10 226 Tc = Ta + Tb;
Chris@10 227 TJ = Ta - Tb;
Chris@10 228 T7 = Cr[0];
Chris@10 229 T8 = Cr[WS(csr, 5)];
Chris@10 230 T9 = T7 + T8;
Chris@10 231 TI = T7 - T8;
Chris@10 232 }
Chris@10 233 Tf = KP559016994 * (T9 - Tc);
Chris@10 234 TW = FNMS(KP1_647278207, TJ, KP1_018073920 * TI);
Chris@10 235 TK = FMA(KP1_647278207, TI, KP1_018073920 * TJ);
Chris@10 236 Td = T9 + Tc;
Chris@10 237 Tg = FNMS(KP250000000, Td, T6);
Chris@10 238 }
Chris@10 239 {
Chris@10 240 E Tn, TM, Tk, TL;
Chris@10 241 TP = Ci[WS(csi, 2)];
Chris@10 242 {
Chris@10 243 E Tl, Tm, Ti, Tj;
Chris@10 244 Tl = Ci[WS(csi, 3)];
Chris@10 245 Tm = Ci[WS(csi, 6)];
Chris@10 246 Tn = Tl - Tm;
Chris@10 247 TM = Tl + Tm;
Chris@10 248 Ti = Ci[0];
Chris@10 249 Tj = Ci[WS(csi, 5)];
Chris@10 250 Tk = Ti + Tj;
Chris@10 251 TL = Ti - Tj;
Chris@10 252 }
Chris@10 253 To = FMA(KP951056516, Tk, KP587785252 * Tn);
Chris@10 254 TN = KP968245836 * (TL - TM);
Chris@10 255 TA = FNMS(KP587785252, Tk, KP951056516 * Tn);
Chris@10 256 TO = TL + TM;
Chris@10 257 TQ = FMA(KP433012701, TO, KP1_732050807 * TP);
Chris@10 258 }
Chris@10 259 T12 = KP1_732050807 * (TP - TO);
Chris@10 260 Te = T6 + Td;
Chris@10 261 T11 = Te - T5;
Chris@10 262 R0[0] = FMA(KP2_000000000, Te, T5);
Chris@10 263 R0[WS(rs, 5)] = T12 - T11;
Chris@10 264 R1[WS(rs, 2)] = T11 + T12;
Chris@10 265 {
Chris@10 266 E TE, TG, TB, TF, TY, T10, Tz, TX, TV, TZ;
Chris@10 267 TE = TC - TD;
Chris@10 268 TG = TC + TD;
Chris@10 269 Tz = Tg - Tf;
Chris@10 270 TB = Tz + TA;
Chris@10 271 TF = TA - Tz;
Chris@10 272 TX = TN + TQ;
Chris@10 273 TY = TW - TX;
Chris@10 274 T10 = TW + TX;
Chris@10 275 R0[WS(rs, 6)] = FMA(KP2_000000000, TB, TE);
Chris@10 276 R1[WS(rs, 1)] = FMS(KP2_000000000, TF, TG);
Chris@10 277 TV = TE - TB;
Chris@10 278 R0[WS(rs, 1)] = TV + TY;
Chris@10 279 R1[WS(rs, 3)] = TY - TV;
Chris@10 280 TZ = TF + TG;
Chris@10 281 R0[WS(rs, 4)] = TZ - T10;
Chris@10 282 R1[WS(rs, 6)] = -(TZ + T10);
Chris@10 283 }
Chris@10 284 {
Chris@10 285 E Tw, Ty, Tp, Tx, TS, TU, Th, TR, TH, TT;
Chris@10 286 Tw = Ts - Tv;
Chris@10 287 Ty = Ts + Tv;
Chris@10 288 Th = Tf + Tg;
Chris@10 289 Tp = Th + To;
Chris@10 290 Tx = Th - To;
Chris@10 291 TR = TN - TQ;
Chris@10 292 TS = TK + TR;
Chris@10 293 TU = TR - TK;
Chris@10 294 R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tp, Tw));
Chris@10 295 R0[WS(rs, 3)] = FMA(KP2_000000000, Tx, Ty);
Chris@10 296 TH = Tx - Ty;
Chris@10 297 R1[WS(rs, 5)] = TH - TS;
Chris@10 298 R1[0] = TH + TS;
Chris@10 299 TT = Tw - Tp;
Chris@10 300 R0[WS(rs, 2)] = TT - TU;
Chris@10 301 R0[WS(rs, 7)] = TT + TU;
Chris@10 302 }
Chris@10 303 }
Chris@10 304 }
Chris@10 305 }
Chris@10 306
Chris@10 307 static const kr2c_desc desc = { 15, "r2cbIII_15", {49, 11, 15, 0}, &GENUS };
Chris@10 308
Chris@10 309 void X(codelet_r2cbIII_15) (planner *p) {
Chris@10 310 X(kr2c_register) (p, r2cbIII_15, &desc);
Chris@10 311 }
Chris@10 312
Chris@10 313 #endif /* HAVE_FMA */