Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:41:35 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 32 FP additions, 28 FP multiplications,
|
Chris@10
|
32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 38 stack variables, 5 constants, and 20 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "r2cbIII.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
Chris@10
|
44 {
|
Chris@10
|
45 INT i;
|
Chris@10
|
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
|
Chris@10
|
47 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
|
Chris@10
|
48 {
|
Chris@10
|
49 E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9;
|
Chris@10
|
50 T1 = Cr[WS(csr, 2)];
|
Chris@10
|
51 To = Ci[WS(csi, 2)];
|
Chris@10
|
52 {
|
Chris@10
|
53 E T2, T3, T5, T6;
|
Chris@10
|
54 T2 = Cr[WS(csr, 4)];
|
Chris@10
|
55 T3 = Cr[0];
|
Chris@10
|
56 T5 = Cr[WS(csr, 3)];
|
Chris@10
|
57 T6 = Cr[WS(csr, 1)];
|
Chris@10
|
58 {
|
Chris@10
|
59 E Tc, T4, T7, Td, Tf, Tg;
|
Chris@10
|
60 Tc = Ci[WS(csi, 3)];
|
Chris@10
|
61 Ts = T2 - T3;
|
Chris@10
|
62 T4 = T2 + T3;
|
Chris@10
|
63 Tt = T5 - T6;
|
Chris@10
|
64 T7 = T5 + T6;
|
Chris@10
|
65 Td = Ci[WS(csi, 1)];
|
Chris@10
|
66 Tf = Ci[WS(csi, 4)];
|
Chris@10
|
67 Tg = Ci[0];
|
Chris@10
|
68 T8 = T4 + T7;
|
Chris@10
|
69 Ta = T7 - T4;
|
Chris@10
|
70 Te = Tc - Td;
|
Chris@10
|
71 Tl = Tc + Td;
|
Chris@10
|
72 Tm = Tf + Tg;
|
Chris@10
|
73 Th = Tf - Tg;
|
Chris@10
|
74 }
|
Chris@10
|
75 }
|
Chris@10
|
76 R0[0] = KP2_000000000 * (T1 + T8);
|
Chris@10
|
77 Tn = Tl - Tm;
|
Chris@10
|
78 Tq = Tl + Tm;
|
Chris@10
|
79 Ti = FMA(KP618033988, Th, Te);
|
Chris@10
|
80 Tk = FNMS(KP618033988, Te, Th);
|
Chris@10
|
81 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
|
Chris@10
|
82 T9 = FMS(KP250000000, T8, T1);
|
Chris@10
|
83 Tu = FMA(KP618033988, Tt, Ts);
|
Chris@10
|
84 Tw = FNMS(KP618033988, Ts, Tt);
|
Chris@10
|
85 Tp = FMA(KP250000000, Tn, To);
|
Chris@10
|
86 Tb = FNMS(KP559016994, Ta, T9);
|
Chris@10
|
87 Tj = FMA(KP559016994, Ta, T9);
|
Chris@10
|
88 }
|
Chris@10
|
89 Tr = FMA(KP559016994, Tq, Tp);
|
Chris@10
|
90 Tv = FNMS(KP559016994, Tq, Tp);
|
Chris@10
|
91 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
|
Chris@10
|
92 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
|
Chris@10
|
93 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
|
Chris@10
|
94 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
|
Chris@10
|
95 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
|
Chris@10
|
96 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
|
Chris@10
|
97 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
|
Chris@10
|
98 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
|
Chris@10
|
99 }
|
Chris@10
|
100 }
|
Chris@10
|
101 }
|
Chris@10
|
102
|
Chris@10
|
103 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
|
Chris@10
|
104
|
Chris@10
|
105 void X(codelet_r2cbIII_10) (planner *p) {
|
Chris@10
|
106 X(kr2c_register) (p, r2cbIII_10, &desc);
|
Chris@10
|
107 }
|
Chris@10
|
108
|
Chris@10
|
109 #else /* HAVE_FMA */
|
Chris@10
|
110
|
Chris@10
|
111 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
|
Chris@10
|
112
|
Chris@10
|
113 /*
|
Chris@10
|
114 * This function contains 32 FP additions, 16 FP multiplications,
|
Chris@10
|
115 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
|
Chris@10
|
116 * 22 stack variables, 5 constants, and 20 memory accesses
|
Chris@10
|
117 */
|
Chris@10
|
118 #include "r2cbIII.h"
|
Chris@10
|
119
|
Chris@10
|
120 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
Chris@10
|
121 {
|
Chris@10
|
122 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
123 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
|
Chris@10
|
124 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
|
Chris@10
|
125 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
Chris@10
|
126 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
|
Chris@10
|
127 {
|
Chris@10
|
128 INT i;
|
Chris@10
|
129 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
|
Chris@10
|
130 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
|
Chris@10
|
131 T1 = Cr[WS(csr, 2)];
|
Chris@10
|
132 To = Ci[WS(csi, 2)];
|
Chris@10
|
133 {
|
Chris@10
|
134 E T2, T3, T4, T5, T6, T7;
|
Chris@10
|
135 T2 = Cr[WS(csr, 4)];
|
Chris@10
|
136 T3 = Cr[0];
|
Chris@10
|
137 T4 = T2 + T3;
|
Chris@10
|
138 T5 = Cr[WS(csr, 3)];
|
Chris@10
|
139 T6 = Cr[WS(csr, 1)];
|
Chris@10
|
140 T7 = T5 + T6;
|
Chris@10
|
141 T8 = T4 + T7;
|
Chris@10
|
142 Tq = T5 - T6;
|
Chris@10
|
143 Ta = KP1_118033988 * (T7 - T4);
|
Chris@10
|
144 Tp = T2 - T3;
|
Chris@10
|
145 }
|
Chris@10
|
146 {
|
Chris@10
|
147 E Tc, Td, Tm, Tf, Tg, Tl;
|
Chris@10
|
148 Tc = Ci[WS(csi, 4)];
|
Chris@10
|
149 Td = Ci[0];
|
Chris@10
|
150 Tm = Tc + Td;
|
Chris@10
|
151 Tf = Ci[WS(csi, 1)];
|
Chris@10
|
152 Tg = Ci[WS(csi, 3)];
|
Chris@10
|
153 Tl = Tg + Tf;
|
Chris@10
|
154 Te = Tc - Td;
|
Chris@10
|
155 Ts = KP1_118033988 * (Tl + Tm);
|
Chris@10
|
156 Th = Tf - Tg;
|
Chris@10
|
157 Tn = Tl - Tm;
|
Chris@10
|
158 }
|
Chris@10
|
159 R0[0] = KP2_000000000 * (T1 + T8);
|
Chris@10
|
160 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
|
Chris@10
|
161 {
|
Chris@10
|
162 E Ti, Tj, Tb, Tk, T9;
|
Chris@10
|
163 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
|
Chris@10
|
164 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
|
Chris@10
|
165 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
|
Chris@10
|
166 Tb = T9 - Ta;
|
Chris@10
|
167 Tk = T9 + Ta;
|
Chris@10
|
168 R0[WS(rs, 1)] = Tb + Ti;
|
Chris@10
|
169 R0[WS(rs, 3)] = Tk + Tj;
|
Chris@10
|
170 R0[WS(rs, 4)] = Ti - Tb;
|
Chris@10
|
171 R0[WS(rs, 2)] = Tj - Tk;
|
Chris@10
|
172 }
|
Chris@10
|
173 {
|
Chris@10
|
174 E Tr, Tv, Tu, Tw, Tt;
|
Chris@10
|
175 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
|
Chris@10
|
176 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
|
Chris@10
|
177 Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
|
Chris@10
|
178 Tu = Ts + Tt;
|
Chris@10
|
179 Tw = Tt - Ts;
|
Chris@10
|
180 R1[0] = -(Tr + Tu);
|
Chris@10
|
181 R1[WS(rs, 3)] = Tw - Tv;
|
Chris@10
|
182 R1[WS(rs, 4)] = Tr - Tu;
|
Chris@10
|
183 R1[WS(rs, 1)] = Tv + Tw;
|
Chris@10
|
184 }
|
Chris@10
|
185 }
|
Chris@10
|
186 }
|
Chris@10
|
187 }
|
Chris@10
|
188
|
Chris@10
|
189 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
|
Chris@10
|
190
|
Chris@10
|
191 void X(codelet_r2cbIII_10) (planner *p) {
|
Chris@10
|
192 X(kr2c_register) (p, r2cbIII_10, &desc);
|
Chris@10
|
193 }
|
Chris@10
|
194
|
Chris@10
|
195 #endif /* HAVE_FMA */
|