annotate src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_6.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:04 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include hc2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 58 FP additions, 32 FP multiplications,
Chris@10 32 * (or, 36 additions, 10 multiplications, 22 fused multiply/add),
Chris@10 33 * 52 stack variables, 2 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cb.h"
Chris@10 36
Chris@10 37 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 44 E T18, T1b, T16, T1e, T1a, T1f, T19, T1g, T1c;
Chris@10 45 {
Chris@10 46 E Tw, T4, TV, Tj, TP, TH, Tr, TY, T5, T6, Ta, Ty;
Chris@10 47 {
Chris@10 48 E Tg, TF, Tf, TD, Tp, Th;
Chris@10 49 {
Chris@10 50 E Td, Te, Tn, To;
Chris@10 51 Td = Ip[WS(rs, 1)];
Chris@10 52 Te = Im[WS(rs, 1)];
Chris@10 53 Tn = Ip[0];
Chris@10 54 To = Im[WS(rs, 2)];
Chris@10 55 Tg = Ip[WS(rs, 2)];
Chris@10 56 TF = Te + Td;
Chris@10 57 Tf = Td - Te;
Chris@10 58 TD = Tn + To;
Chris@10 59 Tp = Tn - To;
Chris@10 60 Th = Im[0];
Chris@10 61 }
Chris@10 62 {
Chris@10 63 E T2, T3, T8, T9;
Chris@10 64 T2 = Rp[0];
Chris@10 65 T3 = Rm[WS(rs, 2)];
Chris@10 66 {
Chris@10 67 E Tq, TE, Ti, TG;
Chris@10 68 T8 = Rm[WS(rs, 1)];
Chris@10 69 TE = Tg + Th;
Chris@10 70 Ti = Tg - Th;
Chris@10 71 Tw = T2 - T3;
Chris@10 72 T4 = T2 + T3;
Chris@10 73 TG = TE - TF;
Chris@10 74 TV = TF + TE;
Chris@10 75 Tq = Tf + Ti;
Chris@10 76 Tj = Tf - Ti;
Chris@10 77 TP = FNMS(KP500000000, TG, TD);
Chris@10 78 TH = TD + TG;
Chris@10 79 T9 = Rp[WS(rs, 1)];
Chris@10 80 Tr = FNMS(KP500000000, Tq, Tp);
Chris@10 81 TY = Tp + Tq;
Chris@10 82 }
Chris@10 83 T5 = Rp[WS(rs, 2)];
Chris@10 84 T6 = Rm[0];
Chris@10 85 Ta = T8 + T9;
Chris@10 86 Ty = T8 - T9;
Chris@10 87 }
Chris@10 88 }
Chris@10 89 {
Chris@10 90 E TO, TT, Ts, TA, TR, Tc, TN, TW, TS, Tx, T7;
Chris@10 91 Tx = T5 - T6;
Chris@10 92 T7 = T5 + T6;
Chris@10 93 TO = W[0];
Chris@10 94 TT = W[1];
Chris@10 95 {
Chris@10 96 E Tz, TQ, Tb, TU;
Chris@10 97 Tz = Tx + Ty;
Chris@10 98 TQ = Tx - Ty;
Chris@10 99 Tb = T7 + Ta;
Chris@10 100 Ts = T7 - Ta;
Chris@10 101 TU = FNMS(KP500000000, Tz, Tw);
Chris@10 102 TA = Tw + Tz;
Chris@10 103 TR = FMA(KP866025403, TQ, TP);
Chris@10 104 T18 = FNMS(KP866025403, TQ, TP);
Chris@10 105 Tc = FNMS(KP500000000, Tb, T4);
Chris@10 106 TN = T4 + Tb;
Chris@10 107 T1b = FMA(KP866025403, TV, TU);
Chris@10 108 TW = FNMS(KP866025403, TV, TU);
Chris@10 109 TS = TO * TR;
Chris@10 110 }
Chris@10 111 {
Chris@10 112 E T15, Tt, T12, T1, Tm, TI, TM, Tl, TJ;
Chris@10 113 {
Chris@10 114 E Tv, TC, TB, TL, Tk, TZ, TX, T10;
Chris@10 115 T15 = FMA(KP866025403, Ts, Tr);
Chris@10 116 Tt = FNMS(KP866025403, Ts, Tr);
Chris@10 117 TZ = TO * TW;
Chris@10 118 TX = FMA(TT, TW, TS);
Chris@10 119 Tv = W[4];
Chris@10 120 TC = W[5];
Chris@10 121 T10 = FNMS(TT, TR, TZ);
Chris@10 122 Rm[0] = TN + TX;
Chris@10 123 Rp[0] = TN - TX;
Chris@10 124 TB = Tv * TA;
Chris@10 125 Im[0] = T10 - TY;
Chris@10 126 Ip[0] = TY + T10;
Chris@10 127 TL = TC * TA;
Chris@10 128 Tk = FNMS(KP866025403, Tj, Tc);
Chris@10 129 T12 = FMA(KP866025403, Tj, Tc);
Chris@10 130 T1 = W[3];
Chris@10 131 Tm = W[2];
Chris@10 132 TI = FNMS(TC, TH, TB);
Chris@10 133 TM = FMA(Tv, TH, TL);
Chris@10 134 Tl = T1 * Tk;
Chris@10 135 TJ = Tm * Tk;
Chris@10 136 }
Chris@10 137 {
Chris@10 138 E T11, T14, T13, T1d, T17, Tu, TK;
Chris@10 139 Tu = FMA(Tm, Tt, Tl);
Chris@10 140 TK = FNMS(T1, Tt, TJ);
Chris@10 141 T11 = W[6];
Chris@10 142 T14 = W[7];
Chris@10 143 Im[WS(rs, 1)] = TI - Tu;
Chris@10 144 Ip[WS(rs, 1)] = Tu + TI;
Chris@10 145 Rm[WS(rs, 1)] = TK + TM;
Chris@10 146 Rp[WS(rs, 1)] = TK - TM;
Chris@10 147 T13 = T11 * T12;
Chris@10 148 T1d = T14 * T12;
Chris@10 149 T17 = W[8];
Chris@10 150 T16 = FNMS(T14, T15, T13);
Chris@10 151 T1e = FMA(T11, T15, T1d);
Chris@10 152 T1a = W[9];
Chris@10 153 T1f = T17 * T1b;
Chris@10 154 T19 = T17 * T18;
Chris@10 155 }
Chris@10 156 }
Chris@10 157 }
Chris@10 158 }
Chris@10 159 T1g = FNMS(T1a, T18, T1f);
Chris@10 160 T1c = FMA(T1a, T1b, T19);
Chris@10 161 Im[WS(rs, 2)] = T1g - T1e;
Chris@10 162 Ip[WS(rs, 2)] = T1e + T1g;
Chris@10 163 Rm[WS(rs, 2)] = T16 + T1c;
Chris@10 164 Rp[WS(rs, 2)] = T16 - T1c;
Chris@10 165 }
Chris@10 166 }
Chris@10 167 }
Chris@10 168
Chris@10 169 static const tw_instr twinstr[] = {
Chris@10 170 {TW_FULL, 1, 6},
Chris@10 171 {TW_NEXT, 1, 0}
Chris@10 172 };
Chris@10 173
Chris@10 174 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {36, 10, 22, 0} };
Chris@10 175
Chris@10 176 void X(codelet_hc2cbdft_6) (planner *p) {
Chris@10 177 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
Chris@10 178 }
Chris@10 179 #else /* HAVE_FMA */
Chris@10 180
Chris@10 181 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include hc2cb.h */
Chris@10 182
Chris@10 183 /*
Chris@10 184 * This function contains 58 FP additions, 28 FP multiplications,
Chris@10 185 * (or, 44 additions, 14 multiplications, 14 fused multiply/add),
Chris@10 186 * 29 stack variables, 2 constants, and 24 memory accesses
Chris@10 187 */
Chris@10 188 #include "hc2cb.h"
Chris@10 189
Chris@10 190 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 191 {
Chris@10 192 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 193 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 194 {
Chris@10 195 INT m;
Chris@10 196 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 197 E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE;
Chris@10 198 E TM;
Chris@10 199 {
Chris@10 200 E Ta, Tx, T7, Tw, T2, T3;
Chris@10 201 T2 = Rp[0];
Chris@10 202 T3 = Rm[WS(rs, 2)];
Chris@10 203 T4 = T2 + T3;
Chris@10 204 Tv = T2 - T3;
Chris@10 205 {
Chris@10 206 E T8, T9, T5, T6;
Chris@10 207 T8 = Rm[WS(rs, 1)];
Chris@10 208 T9 = Rp[WS(rs, 1)];
Chris@10 209 Ta = T8 + T9;
Chris@10 210 Tx = T8 - T9;
Chris@10 211 T5 = Rp[WS(rs, 2)];
Chris@10 212 T6 = Rm[0];
Chris@10 213 T7 = T5 + T6;
Chris@10 214 Tw = T5 - T6;
Chris@10 215 }
Chris@10 216 Tr = KP866025403 * (T7 - Ta);
Chris@10 217 TL = KP866025403 * (Tw - Tx);
Chris@10 218 Tb = T7 + Ta;
Chris@10 219 Tc = FNMS(KP500000000, Tb, T4);
Chris@10 220 Ty = Tw + Tx;
Chris@10 221 TP = FNMS(KP500000000, Ty, Tv);
Chris@10 222 }
Chris@10 223 {
Chris@10 224 E Tf, TC, Ti, TD, Td, Te;
Chris@10 225 Td = Ip[WS(rs, 1)];
Chris@10 226 Te = Im[WS(rs, 1)];
Chris@10 227 Tf = Td - Te;
Chris@10 228 TC = Te + Td;
Chris@10 229 {
Chris@10 230 E Tm, Tn, Tg, Th;
Chris@10 231 Tm = Ip[0];
Chris@10 232 Tn = Im[WS(rs, 2)];
Chris@10 233 To = Tm - Tn;
Chris@10 234 TB = Tm + Tn;
Chris@10 235 Tg = Ip[WS(rs, 2)];
Chris@10 236 Th = Im[0];
Chris@10 237 Ti = Tg - Th;
Chris@10 238 TD = Tg + Th;
Chris@10 239 }
Chris@10 240 Tj = KP866025403 * (Tf - Ti);
Chris@10 241 TQ = KP866025403 * (TC + TD);
Chris@10 242 Tp = Tf + Ti;
Chris@10 243 Tq = FNMS(KP500000000, Tp, To);
Chris@10 244 TE = TC - TD;
Chris@10 245 TM = FMA(KP500000000, TE, TB);
Chris@10 246 }
Chris@10 247 {
Chris@10 248 E TJ, TT, TS, TU;
Chris@10 249 TJ = T4 + Tb;
Chris@10 250 TT = To + Tp;
Chris@10 251 {
Chris@10 252 E TN, TR, TK, TO;
Chris@10 253 TN = TL + TM;
Chris@10 254 TR = TP - TQ;
Chris@10 255 TK = W[0];
Chris@10 256 TO = W[1];
Chris@10 257 TS = FMA(TK, TN, TO * TR);
Chris@10 258 TU = FNMS(TO, TN, TK * TR);
Chris@10 259 }
Chris@10 260 Rp[0] = TJ - TS;
Chris@10 261 Ip[0] = TT + TU;
Chris@10 262 Rm[0] = TJ + TS;
Chris@10 263 Im[0] = TU - TT;
Chris@10 264 }
Chris@10 265 {
Chris@10 266 E TZ, T15, T14, T16;
Chris@10 267 {
Chris@10 268 E TW, TY, TV, TX;
Chris@10 269 TW = Tc + Tj;
Chris@10 270 TY = Tr + Tq;
Chris@10 271 TV = W[6];
Chris@10 272 TX = W[7];
Chris@10 273 TZ = FNMS(TX, TY, TV * TW);
Chris@10 274 T15 = FMA(TX, TW, TV * TY);
Chris@10 275 }
Chris@10 276 {
Chris@10 277 E T11, T13, T10, T12;
Chris@10 278 T11 = TM - TL;
Chris@10 279 T13 = TP + TQ;
Chris@10 280 T10 = W[8];
Chris@10 281 T12 = W[9];
Chris@10 282 T14 = FMA(T10, T11, T12 * T13);
Chris@10 283 T16 = FNMS(T12, T11, T10 * T13);
Chris@10 284 }
Chris@10 285 Rp[WS(rs, 2)] = TZ - T14;
Chris@10 286 Ip[WS(rs, 2)] = T15 + T16;
Chris@10 287 Rm[WS(rs, 2)] = TZ + T14;
Chris@10 288 Im[WS(rs, 2)] = T16 - T15;
Chris@10 289 }
Chris@10 290 {
Chris@10 291 E Tt, TH, TG, TI;
Chris@10 292 {
Chris@10 293 E Tk, Ts, T1, Tl;
Chris@10 294 Tk = Tc - Tj;
Chris@10 295 Ts = Tq - Tr;
Chris@10 296 T1 = W[3];
Chris@10 297 Tl = W[2];
Chris@10 298 Tt = FMA(T1, Tk, Tl * Ts);
Chris@10 299 TH = FNMS(T1, Ts, Tl * Tk);
Chris@10 300 }
Chris@10 301 {
Chris@10 302 E Tz, TF, Tu, TA;
Chris@10 303 Tz = Tv + Ty;
Chris@10 304 TF = TB - TE;
Chris@10 305 Tu = W[4];
Chris@10 306 TA = W[5];
Chris@10 307 TG = FNMS(TA, TF, Tu * Tz);
Chris@10 308 TI = FMA(TA, Tz, Tu * TF);
Chris@10 309 }
Chris@10 310 Ip[WS(rs, 1)] = Tt + TG;
Chris@10 311 Rp[WS(rs, 1)] = TH - TI;
Chris@10 312 Im[WS(rs, 1)] = TG - Tt;
Chris@10 313 Rm[WS(rs, 1)] = TH + TI;
Chris@10 314 }
Chris@10 315 }
Chris@10 316 }
Chris@10 317 }
Chris@10 318
Chris@10 319 static const tw_instr twinstr[] = {
Chris@10 320 {TW_FULL, 1, 6},
Chris@10 321 {TW_NEXT, 1, 0}
Chris@10 322 };
Chris@10 323
Chris@10 324 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {44, 14, 14, 0} };
Chris@10 325
Chris@10 326 void X(codelet_hc2cbdft_6) (planner *p) {
Chris@10 327 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
Chris@10 328 }
Chris@10 329 #endif /* HAVE_FMA */