annotate src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft2_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:07 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include hc2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 82 FP additions, 36 FP multiplications,
Chris@10 32 * (or, 60 additions, 14 multiplications, 22 fused multiply/add),
Chris@10 33 * 55 stack variables, 1 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cb.h"
Chris@10 36
Chris@10 37 static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 43 E T1m, T1r, T1i, T1u, T1o, T1v, T1n, T1w, T1s;
Chris@10 44 {
Chris@10 45 E T1k, Tl, T1p, TE, TP, T1g, TM, T1b, T1f, T1a, TU, Tf, T1l, TH, Tw;
Chris@10 46 E T1q;
Chris@10 47 {
Chris@10 48 E TA, T3, TN, Tk, Th, T6, TO, TD, Tb, Tm, Ta, TK, Tp, Tc, Ts;
Chris@10 49 E Tt;
Chris@10 50 {
Chris@10 51 E T4, T5, TB, TC;
Chris@10 52 {
Chris@10 53 E T1, T2, Ti, Tj;
Chris@10 54 T1 = Rp[0];
Chris@10 55 T2 = Rm[WS(rs, 3)];
Chris@10 56 Ti = Ip[0];
Chris@10 57 Tj = Im[WS(rs, 3)];
Chris@10 58 T4 = Rp[WS(rs, 2)];
Chris@10 59 TA = T1 - T2;
Chris@10 60 T3 = T1 + T2;
Chris@10 61 TN = Ti - Tj;
Chris@10 62 Tk = Ti + Tj;
Chris@10 63 T5 = Rm[WS(rs, 1)];
Chris@10 64 TB = Ip[WS(rs, 2)];
Chris@10 65 TC = Im[WS(rs, 1)];
Chris@10 66 }
Chris@10 67 {
Chris@10 68 E T8, T9, Tn, To;
Chris@10 69 T8 = Rp[WS(rs, 1)];
Chris@10 70 Th = T4 - T5;
Chris@10 71 T6 = T4 + T5;
Chris@10 72 TO = TB - TC;
Chris@10 73 TD = TB + TC;
Chris@10 74 T9 = Rm[WS(rs, 2)];
Chris@10 75 Tn = Ip[WS(rs, 1)];
Chris@10 76 To = Im[WS(rs, 2)];
Chris@10 77 Tb = Rm[0];
Chris@10 78 Tm = T8 - T9;
Chris@10 79 Ta = T8 + T9;
Chris@10 80 TK = Tn - To;
Chris@10 81 Tp = Tn + To;
Chris@10 82 Tc = Rp[WS(rs, 3)];
Chris@10 83 Ts = Im[0];
Chris@10 84 Tt = Ip[WS(rs, 3)];
Chris@10 85 }
Chris@10 86 }
Chris@10 87 {
Chris@10 88 E Tr, Td, Tu, TL, Te, T7;
Chris@10 89 T1k = Tk - Th;
Chris@10 90 Tl = Th + Tk;
Chris@10 91 Tr = Tb - Tc;
Chris@10 92 Td = Tb + Tc;
Chris@10 93 TL = Tt - Ts;
Chris@10 94 Tu = Ts + Tt;
Chris@10 95 T1p = TA + TD;
Chris@10 96 TE = TA - TD;
Chris@10 97 TP = TN + TO;
Chris@10 98 T1g = TN - TO;
Chris@10 99 TM = TK + TL;
Chris@10 100 T1b = TL - TK;
Chris@10 101 T1f = Ta - Td;
Chris@10 102 Te = Ta + Td;
Chris@10 103 T1a = T3 - T6;
Chris@10 104 T7 = T3 + T6;
Chris@10 105 {
Chris@10 106 E Tq, TF, TG, Tv;
Chris@10 107 Tq = Tm + Tp;
Chris@10 108 TF = Tm - Tp;
Chris@10 109 TG = Tr - Tu;
Chris@10 110 Tv = Tr + Tu;
Chris@10 111 TU = T7 - Te;
Chris@10 112 Tf = T7 + Te;
Chris@10 113 T1l = TF - TG;
Chris@10 114 TH = TF + TG;
Chris@10 115 Tw = Tq - Tv;
Chris@10 116 T1q = Tq + Tv;
Chris@10 117 }
Chris@10 118 }
Chris@10 119 }
Chris@10 120 {
Chris@10 121 E TX, T10, T1c, T13, T1h, T1E, T1H, T1C, T1K, T1G, T1L, T1F;
Chris@10 122 {
Chris@10 123 E TQ, Tx, T1y, TI, Tg, Tz;
Chris@10 124 TX = TP - TM;
Chris@10 125 TQ = TM + TP;
Chris@10 126 Tx = FMA(KP707106781, Tw, Tl);
Chris@10 127 T10 = FNMS(KP707106781, Tw, Tl);
Chris@10 128 T1c = T1a + T1b;
Chris@10 129 T1y = T1a - T1b;
Chris@10 130 T13 = FNMS(KP707106781, TH, TE);
Chris@10 131 TI = FMA(KP707106781, TH, TE);
Chris@10 132 Tg = W[0];
Chris@10 133 Tz = W[1];
Chris@10 134 {
Chris@10 135 E T1B, T1A, T1x, T1J, T1z, T1D;
Chris@10 136 {
Chris@10 137 E TR, Ty, TS, TJ;
Chris@10 138 T1B = T1g - T1f;
Chris@10 139 T1h = T1f + T1g;
Chris@10 140 T1A = W[11];
Chris@10 141 TR = Tg * TI;
Chris@10 142 Ty = Tg * Tx;
Chris@10 143 T1x = W[10];
Chris@10 144 T1J = T1A * T1y;
Chris@10 145 TS = FNMS(Tz, Tx, TR);
Chris@10 146 TJ = FMA(Tz, TI, Ty);
Chris@10 147 T1z = T1x * T1y;
Chris@10 148 T1m = FMA(KP707106781, T1l, T1k);
Chris@10 149 T1E = FNMS(KP707106781, T1l, T1k);
Chris@10 150 Im[0] = TS - TQ;
Chris@10 151 Ip[0] = TQ + TS;
Chris@10 152 Rm[0] = Tf + TJ;
Chris@10 153 Rp[0] = Tf - TJ;
Chris@10 154 T1H = FMA(KP707106781, T1q, T1p);
Chris@10 155 T1r = FNMS(KP707106781, T1q, T1p);
Chris@10 156 T1D = W[12];
Chris@10 157 }
Chris@10 158 T1C = FNMS(T1A, T1B, T1z);
Chris@10 159 T1K = FMA(T1x, T1B, T1J);
Chris@10 160 T1G = W[13];
Chris@10 161 T1L = T1D * T1H;
Chris@10 162 T1F = T1D * T1E;
Chris@10 163 }
Chris@10 164 }
Chris@10 165 {
Chris@10 166 E TY, T16, T12, T17, T11;
Chris@10 167 {
Chris@10 168 E TW, TT, T15, TV, TZ, T1M, T1I;
Chris@10 169 TW = W[7];
Chris@10 170 T1M = FNMS(T1G, T1E, T1L);
Chris@10 171 T1I = FMA(T1G, T1H, T1F);
Chris@10 172 TT = W[6];
Chris@10 173 T15 = TW * TU;
Chris@10 174 Im[WS(rs, 3)] = T1M - T1K;
Chris@10 175 Ip[WS(rs, 3)] = T1K + T1M;
Chris@10 176 Rm[WS(rs, 3)] = T1C + T1I;
Chris@10 177 Rp[WS(rs, 3)] = T1C - T1I;
Chris@10 178 TV = TT * TU;
Chris@10 179 TZ = W[8];
Chris@10 180 TY = FNMS(TW, TX, TV);
Chris@10 181 T16 = FMA(TT, TX, T15);
Chris@10 182 T12 = W[9];
Chris@10 183 T17 = TZ * T13;
Chris@10 184 T11 = TZ * T10;
Chris@10 185 }
Chris@10 186 {
Chris@10 187 E T1e, T19, T1t, T1d, T1j, T18, T14;
Chris@10 188 T1e = W[3];
Chris@10 189 T18 = FNMS(T12, T10, T17);
Chris@10 190 T14 = FMA(T12, T13, T11);
Chris@10 191 T19 = W[2];
Chris@10 192 T1t = T1e * T1c;
Chris@10 193 Im[WS(rs, 2)] = T18 - T16;
Chris@10 194 Ip[WS(rs, 2)] = T16 + T18;
Chris@10 195 Rm[WS(rs, 2)] = TY + T14;
Chris@10 196 Rp[WS(rs, 2)] = TY - T14;
Chris@10 197 T1d = T19 * T1c;
Chris@10 198 T1j = W[4];
Chris@10 199 T1i = FNMS(T1e, T1h, T1d);
Chris@10 200 T1u = FMA(T19, T1h, T1t);
Chris@10 201 T1o = W[5];
Chris@10 202 T1v = T1j * T1r;
Chris@10 203 T1n = T1j * T1m;
Chris@10 204 }
Chris@10 205 }
Chris@10 206 }
Chris@10 207 }
Chris@10 208 T1w = FNMS(T1o, T1m, T1v);
Chris@10 209 T1s = FMA(T1o, T1r, T1n);
Chris@10 210 Im[WS(rs, 1)] = T1w - T1u;
Chris@10 211 Ip[WS(rs, 1)] = T1u + T1w;
Chris@10 212 Rm[WS(rs, 1)] = T1i + T1s;
Chris@10 213 Rp[WS(rs, 1)] = T1i - T1s;
Chris@10 214 }
Chris@10 215 }
Chris@10 216 }
Chris@10 217
Chris@10 218 static const tw_instr twinstr[] = {
Chris@10 219 {TW_FULL, 1, 8},
Chris@10 220 {TW_NEXT, 1, 0}
Chris@10 221 };
Chris@10 222
Chris@10 223 static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {60, 14, 22, 0} };
Chris@10 224
Chris@10 225 void X(codelet_hc2cbdft2_8) (planner *p) {
Chris@10 226 X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
Chris@10 227 }
Chris@10 228 #else /* HAVE_FMA */
Chris@10 229
Chris@10 230 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include hc2cb.h */
Chris@10 231
Chris@10 232 /*
Chris@10 233 * This function contains 82 FP additions, 32 FP multiplications,
Chris@10 234 * (or, 68 additions, 18 multiplications, 14 fused multiply/add),
Chris@10 235 * 30 stack variables, 1 constants, and 32 memory accesses
Chris@10 236 */
Chris@10 237 #include "hc2cb.h"
Chris@10 238
Chris@10 239 static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 240 {
Chris@10 241 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 242 {
Chris@10 243 INT m;
Chris@10 244 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 245 E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
Chris@10 246 E T1i;
Chris@10 247 {
Chris@10 248 E T3, TC, Tk, TM, T6, Th, TF, TN;
Chris@10 249 {
Chris@10 250 E T1, T2, Ti, Tj;
Chris@10 251 T1 = Rp[0];
Chris@10 252 T2 = Rm[WS(rs, 3)];
Chris@10 253 T3 = T1 + T2;
Chris@10 254 TC = T1 - T2;
Chris@10 255 Ti = Ip[0];
Chris@10 256 Tj = Im[WS(rs, 3)];
Chris@10 257 Tk = Ti + Tj;
Chris@10 258 TM = Ti - Tj;
Chris@10 259 }
Chris@10 260 {
Chris@10 261 E T4, T5, TD, TE;
Chris@10 262 T4 = Rp[WS(rs, 2)];
Chris@10 263 T5 = Rm[WS(rs, 1)];
Chris@10 264 T6 = T4 + T5;
Chris@10 265 Th = T4 - T5;
Chris@10 266 TD = Ip[WS(rs, 2)];
Chris@10 267 TE = Im[WS(rs, 1)];
Chris@10 268 TF = TD + TE;
Chris@10 269 TN = TD - TE;
Chris@10 270 }
Chris@10 271 T7 = T3 + T6;
Chris@10 272 T1d = Tk - Th;
Chris@10 273 T1h = TC + TF;
Chris@10 274 Tl = Th + Tk;
Chris@10 275 TG = TC - TF;
Chris@10 276 T14 = T3 - T6;
Chris@10 277 T19 = TM - TN;
Chris@10 278 TO = TM + TN;
Chris@10 279 }
Chris@10 280 {
Chris@10 281 E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
Chris@10 282 {
Chris@10 283 E T8, T9, Tn, To;
Chris@10 284 T8 = Rp[WS(rs, 1)];
Chris@10 285 T9 = Rm[WS(rs, 2)];
Chris@10 286 Ta = T8 + T9;
Chris@10 287 Tm = T8 - T9;
Chris@10 288 Tn = Ip[WS(rs, 1)];
Chris@10 289 To = Im[WS(rs, 2)];
Chris@10 290 Tp = Tn + To;
Chris@10 291 TJ = Tn - To;
Chris@10 292 }
Chris@10 293 {
Chris@10 294 E Tb, Tc, Ts, Tt;
Chris@10 295 Tb = Rm[0];
Chris@10 296 Tc = Rp[WS(rs, 3)];
Chris@10 297 Td = Tb + Tc;
Chris@10 298 Tr = Tb - Tc;
Chris@10 299 Ts = Im[0];
Chris@10 300 Tt = Ip[WS(rs, 3)];
Chris@10 301 Tu = Ts + Tt;
Chris@10 302 TK = Tt - Ts;
Chris@10 303 }
Chris@10 304 Te = Ta + Td;
Chris@10 305 TL = TJ + TK;
Chris@10 306 T18 = Ta - Td;
Chris@10 307 T15 = TK - TJ;
Chris@10 308 {
Chris@10 309 E Tz, TA, Tq, Tv;
Chris@10 310 Tz = Tm - Tp;
Chris@10 311 TA = Tr - Tu;
Chris@10 312 TB = KP707106781 * (Tz + TA);
Chris@10 313 T1e = KP707106781 * (Tz - TA);
Chris@10 314 Tq = Tm + Tp;
Chris@10 315 Tv = Tr + Tu;
Chris@10 316 Tw = KP707106781 * (Tq - Tv);
Chris@10 317 T1i = KP707106781 * (Tq + Tv);
Chris@10 318 }
Chris@10 319 }
Chris@10 320 {
Chris@10 321 E Tf, TP, TI, TQ;
Chris@10 322 Tf = T7 + Te;
Chris@10 323 TP = TL + TO;
Chris@10 324 {
Chris@10 325 E Tx, TH, Tg, Ty;
Chris@10 326 Tx = Tl + Tw;
Chris@10 327 TH = TB + TG;
Chris@10 328 Tg = W[0];
Chris@10 329 Ty = W[1];
Chris@10 330 TI = FMA(Tg, Tx, Ty * TH);
Chris@10 331 TQ = FNMS(Ty, Tx, Tg * TH);
Chris@10 332 }
Chris@10 333 Rp[0] = Tf - TI;
Chris@10 334 Ip[0] = TP + TQ;
Chris@10 335 Rm[0] = Tf + TI;
Chris@10 336 Im[0] = TQ - TP;
Chris@10 337 }
Chris@10 338 {
Chris@10 339 E T1r, T1x, T1w, T1y;
Chris@10 340 {
Chris@10 341 E T1o, T1q, T1n, T1p;
Chris@10 342 T1o = T14 - T15;
Chris@10 343 T1q = T19 - T18;
Chris@10 344 T1n = W[10];
Chris@10 345 T1p = W[11];
Chris@10 346 T1r = FNMS(T1p, T1q, T1n * T1o);
Chris@10 347 T1x = FMA(T1p, T1o, T1n * T1q);
Chris@10 348 }
Chris@10 349 {
Chris@10 350 E T1t, T1v, T1s, T1u;
Chris@10 351 T1t = T1d - T1e;
Chris@10 352 T1v = T1i + T1h;
Chris@10 353 T1s = W[12];
Chris@10 354 T1u = W[13];
Chris@10 355 T1w = FMA(T1s, T1t, T1u * T1v);
Chris@10 356 T1y = FNMS(T1u, T1t, T1s * T1v);
Chris@10 357 }
Chris@10 358 Rp[WS(rs, 3)] = T1r - T1w;
Chris@10 359 Ip[WS(rs, 3)] = T1x + T1y;
Chris@10 360 Rm[WS(rs, 3)] = T1r + T1w;
Chris@10 361 Im[WS(rs, 3)] = T1y - T1x;
Chris@10 362 }
Chris@10 363 {
Chris@10 364 E TV, T11, T10, T12;
Chris@10 365 {
Chris@10 366 E TS, TU, TR, TT;
Chris@10 367 TS = T7 - Te;
Chris@10 368 TU = TO - TL;
Chris@10 369 TR = W[6];
Chris@10 370 TT = W[7];
Chris@10 371 TV = FNMS(TT, TU, TR * TS);
Chris@10 372 T11 = FMA(TT, TS, TR * TU);
Chris@10 373 }
Chris@10 374 {
Chris@10 375 E TX, TZ, TW, TY;
Chris@10 376 TX = Tl - Tw;
Chris@10 377 TZ = TG - TB;
Chris@10 378 TW = W[8];
Chris@10 379 TY = W[9];
Chris@10 380 T10 = FMA(TW, TX, TY * TZ);
Chris@10 381 T12 = FNMS(TY, TX, TW * TZ);
Chris@10 382 }
Chris@10 383 Rp[WS(rs, 2)] = TV - T10;
Chris@10 384 Ip[WS(rs, 2)] = T11 + T12;
Chris@10 385 Rm[WS(rs, 2)] = TV + T10;
Chris@10 386 Im[WS(rs, 2)] = T12 - T11;
Chris@10 387 }
Chris@10 388 {
Chris@10 389 E T1b, T1l, T1k, T1m;
Chris@10 390 {
Chris@10 391 E T16, T1a, T13, T17;
Chris@10 392 T16 = T14 + T15;
Chris@10 393 T1a = T18 + T19;
Chris@10 394 T13 = W[2];
Chris@10 395 T17 = W[3];
Chris@10 396 T1b = FNMS(T17, T1a, T13 * T16);
Chris@10 397 T1l = FMA(T17, T16, T13 * T1a);
Chris@10 398 }
Chris@10 399 {
Chris@10 400 E T1f, T1j, T1c, T1g;
Chris@10 401 T1f = T1d + T1e;
Chris@10 402 T1j = T1h - T1i;
Chris@10 403 T1c = W[4];
Chris@10 404 T1g = W[5];
Chris@10 405 T1k = FMA(T1c, T1f, T1g * T1j);
Chris@10 406 T1m = FNMS(T1g, T1f, T1c * T1j);
Chris@10 407 }
Chris@10 408 Rp[WS(rs, 1)] = T1b - T1k;
Chris@10 409 Ip[WS(rs, 1)] = T1l + T1m;
Chris@10 410 Rm[WS(rs, 1)] = T1b + T1k;
Chris@10 411 Im[WS(rs, 1)] = T1m - T1l;
Chris@10 412 }
Chris@10 413 }
Chris@10 414 }
Chris@10 415 }
Chris@10 416
Chris@10 417 static const tw_instr twinstr[] = {
Chris@10 418 {TW_FULL, 1, 8},
Chris@10 419 {TW_NEXT, 1, 0}
Chris@10 420 };
Chris@10 421
Chris@10 422 static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {68, 18, 14, 0} };
Chris@10 423
Chris@10 424 void X(codelet_hc2cbdft2_8) (planner *p) {
Chris@10 425 X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
Chris@10 426 }
Chris@10 427 #endif /* HAVE_FMA */