annotate src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb_4.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:52 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include hc2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 22 FP additions, 12 FP multiplications,
Chris@10 32 * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
Chris@10 33 * 25 stack variables, 0 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cb.h"
Chris@10 36
Chris@10 37 static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 {
Chris@10 40 INT m;
Chris@10 41 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 42 E Th, Ta, T7, Ti, T9;
Chris@10 43 {
Chris@10 44 E Tq, Td, T3, Tg, Tu, Tm, T6, Tp;
Chris@10 45 {
Chris@10 46 E Tk, T4, Tl, T5;
Chris@10 47 {
Chris@10 48 E Tb, Tc, T1, T2, Te, Tf;
Chris@10 49 Tb = Ip[0];
Chris@10 50 Tc = Im[WS(rs, 1)];
Chris@10 51 T1 = Rp[0];
Chris@10 52 T2 = Rm[WS(rs, 1)];
Chris@10 53 Te = Ip[WS(rs, 1)];
Chris@10 54 Tq = Tb + Tc;
Chris@10 55 Td = Tb - Tc;
Chris@10 56 Tf = Im[0];
Chris@10 57 Tk = T1 - T2;
Chris@10 58 T3 = T1 + T2;
Chris@10 59 T4 = Rp[WS(rs, 1)];
Chris@10 60 Tg = Te - Tf;
Chris@10 61 Tl = Te + Tf;
Chris@10 62 T5 = Rm[0];
Chris@10 63 }
Chris@10 64 Tu = Tk + Tl;
Chris@10 65 Tm = Tk - Tl;
Chris@10 66 T6 = T4 + T5;
Chris@10 67 Tp = T4 - T5;
Chris@10 68 }
Chris@10 69 Rm[0] = Td + Tg;
Chris@10 70 {
Chris@10 71 E Tx, Tr, T8, Tn, Ts, To, Tj;
Chris@10 72 Tj = W[0];
Chris@10 73 Tx = Tq - Tp;
Chris@10 74 Tr = Tp + Tq;
Chris@10 75 Rp[0] = T3 + T6;
Chris@10 76 T8 = T3 - T6;
Chris@10 77 Tn = Tj * Tm;
Chris@10 78 Ts = Tj * Tr;
Chris@10 79 To = W[1];
Chris@10 80 {
Chris@10 81 E Tt, Tw, Ty, Tv;
Chris@10 82 Tt = W[4];
Chris@10 83 Tw = W[5];
Chris@10 84 Th = Td - Tg;
Chris@10 85 Im[0] = FMA(To, Tm, Ts);
Chris@10 86 Ip[0] = FNMS(To, Tr, Tn);
Chris@10 87 Ty = Tt * Tx;
Chris@10 88 Tv = Tt * Tu;
Chris@10 89 Ta = W[3];
Chris@10 90 T7 = W[2];
Chris@10 91 Im[WS(rs, 1)] = FMA(Tw, Tu, Ty);
Chris@10 92 Ip[WS(rs, 1)] = FNMS(Tw, Tx, Tv);
Chris@10 93 Ti = Ta * T8;
Chris@10 94 T9 = T7 * T8;
Chris@10 95 }
Chris@10 96 }
Chris@10 97 }
Chris@10 98 Rm[WS(rs, 1)] = FMA(T7, Th, Ti);
Chris@10 99 Rp[WS(rs, 1)] = FNMS(Ta, Th, T9);
Chris@10 100 }
Chris@10 101 }
Chris@10 102 }
Chris@10 103
Chris@10 104 static const tw_instr twinstr[] = {
Chris@10 105 {TW_FULL, 1, 4},
Chris@10 106 {TW_NEXT, 1, 0}
Chris@10 107 };
Chris@10 108
Chris@10 109 static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, {16, 6, 6, 0} };
Chris@10 110
Chris@10 111 void X(codelet_hc2cb_4) (planner *p) {
Chris@10 112 X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT);
Chris@10 113 }
Chris@10 114 #else /* HAVE_FMA */
Chris@10 115
Chris@10 116 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include hc2cb.h */
Chris@10 117
Chris@10 118 /*
Chris@10 119 * This function contains 22 FP additions, 12 FP multiplications,
Chris@10 120 * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
Chris@10 121 * 13 stack variables, 0 constants, and 16 memory accesses
Chris@10 122 */
Chris@10 123 #include "hc2cb.h"
Chris@10 124
Chris@10 125 static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 126 {
Chris@10 127 {
Chris@10 128 INT m;
Chris@10 129 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 130 E T3, Ti, Tc, Tn, T6, Tm, Tf, Tj;
Chris@10 131 {
Chris@10 132 E T1, T2, Ta, Tb;
Chris@10 133 T1 = Rp[0];
Chris@10 134 T2 = Rm[WS(rs, 1)];
Chris@10 135 T3 = T1 + T2;
Chris@10 136 Ti = T1 - T2;
Chris@10 137 Ta = Ip[0];
Chris@10 138 Tb = Im[WS(rs, 1)];
Chris@10 139 Tc = Ta - Tb;
Chris@10 140 Tn = Ta + Tb;
Chris@10 141 }
Chris@10 142 {
Chris@10 143 E T4, T5, Td, Te;
Chris@10 144 T4 = Rp[WS(rs, 1)];
Chris@10 145 T5 = Rm[0];
Chris@10 146 T6 = T4 + T5;
Chris@10 147 Tm = T4 - T5;
Chris@10 148 Td = Ip[WS(rs, 1)];
Chris@10 149 Te = Im[0];
Chris@10 150 Tf = Td - Te;
Chris@10 151 Tj = Td + Te;
Chris@10 152 }
Chris@10 153 Rp[0] = T3 + T6;
Chris@10 154 Rm[0] = Tc + Tf;
Chris@10 155 {
Chris@10 156 E T8, Tg, T7, T9;
Chris@10 157 T8 = T3 - T6;
Chris@10 158 Tg = Tc - Tf;
Chris@10 159 T7 = W[2];
Chris@10 160 T9 = W[3];
Chris@10 161 Rp[WS(rs, 1)] = FNMS(T9, Tg, T7 * T8);
Chris@10 162 Rm[WS(rs, 1)] = FMA(T9, T8, T7 * Tg);
Chris@10 163 }
Chris@10 164 {
Chris@10 165 E Tk, To, Th, Tl;
Chris@10 166 Tk = Ti - Tj;
Chris@10 167 To = Tm + Tn;
Chris@10 168 Th = W[0];
Chris@10 169 Tl = W[1];
Chris@10 170 Ip[0] = FNMS(Tl, To, Th * Tk);
Chris@10 171 Im[0] = FMA(Th, To, Tl * Tk);
Chris@10 172 }
Chris@10 173 {
Chris@10 174 E Tq, Ts, Tp, Tr;
Chris@10 175 Tq = Ti + Tj;
Chris@10 176 Ts = Tn - Tm;
Chris@10 177 Tp = W[4];
Chris@10 178 Tr = W[5];
Chris@10 179 Ip[WS(rs, 1)] = FNMS(Tr, Ts, Tp * Tq);
Chris@10 180 Im[WS(rs, 1)] = FMA(Tp, Ts, Tr * Tq);
Chris@10 181 }
Chris@10 182 }
Chris@10 183 }
Chris@10 184 }
Chris@10 185
Chris@10 186 static const tw_instr twinstr[] = {
Chris@10 187 {TW_FULL, 1, 4},
Chris@10 188 {TW_NEXT, 1, 0}
Chris@10 189 };
Chris@10 190
Chris@10 191 static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, {16, 6, 6, 0} };
Chris@10 192
Chris@10 193 void X(codelet_hc2cb_4) (planner *p) {
Chris@10 194 X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT);
Chris@10 195 }
Chris@10 196 #endif /* HAVE_FMA */