annotate src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb2_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:57 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 74 FP additions, 50 FP multiplications,
Chris@10 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
Chris@10 33 * 64 stack variables, 1 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cb.h"
Chris@10 36
Chris@10 37 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 43 E Tf, Ti, TK, Tq, TH, TT, TX, TW, TY, TU, TI;
Chris@10 44 {
Chris@10 45 E Tg, Tl, Tp, Th, T1n, T1t, Tj;
Chris@10 46 Tf = W[0];
Chris@10 47 Tg = W[2];
Chris@10 48 Tl = W[4];
Chris@10 49 Tp = W[5];
Chris@10 50 Ti = W[1];
Chris@10 51 Th = Tf * Tg;
Chris@10 52 T1n = Tf * Tl;
Chris@10 53 T1t = Tf * Tp;
Chris@10 54 Tj = W[3];
Chris@10 55 {
Chris@10 56 E T1o, T1u, Tk, T1b, To, T1e, T13, TP, T1p, T7, T1h, T1v, TZ, Tv, T1i;
Chris@10 57 E TB, TA, TQ, Te, T1w, TE, T1j;
Chris@10 58 {
Chris@10 59 E Tr, T3, Ts, T1f, TO, TL, T6, Tt;
Chris@10 60 {
Chris@10 61 E TM, TN, T4, T5;
Chris@10 62 {
Chris@10 63 E T1, Tn, T2, TJ, Tm;
Chris@10 64 T1 = Rp[0];
Chris@10 65 T1o = FMA(Ti, Tp, T1n);
Chris@10 66 T1u = FNMS(Ti, Tl, T1t);
Chris@10 67 Tk = FMA(Ti, Tj, Th);
Chris@10 68 T1b = FNMS(Ti, Tj, Th);
Chris@10 69 Tn = Tf * Tj;
Chris@10 70 T2 = Rm[WS(rs, 3)];
Chris@10 71 TM = Ip[0];
Chris@10 72 TJ = Tk * Tp;
Chris@10 73 Tm = Tk * Tl;
Chris@10 74 To = FNMS(Ti, Tg, Tn);
Chris@10 75 T1e = FMA(Ti, Tg, Tn);
Chris@10 76 Tr = T1 - T2;
Chris@10 77 T3 = T1 + T2;
Chris@10 78 TK = FNMS(To, Tl, TJ);
Chris@10 79 Tq = FMA(To, Tp, Tm);
Chris@10 80 TN = Im[WS(rs, 3)];
Chris@10 81 }
Chris@10 82 T4 = Rp[WS(rs, 2)];
Chris@10 83 T5 = Rm[WS(rs, 1)];
Chris@10 84 Ts = Ip[WS(rs, 2)];
Chris@10 85 T1f = TM - TN;
Chris@10 86 TO = TM + TN;
Chris@10 87 TL = T4 - T5;
Chris@10 88 T6 = T4 + T5;
Chris@10 89 Tt = Im[WS(rs, 1)];
Chris@10 90 }
Chris@10 91 {
Chris@10 92 E Tw, Ta, TC, Tz, Td, TD;
Chris@10 93 {
Chris@10 94 E Tx, Ty, Tb, Tc;
Chris@10 95 {
Chris@10 96 E T8, T1g, Tu, T9;
Chris@10 97 T8 = Rp[WS(rs, 1)];
Chris@10 98 T13 = TO - TL;
Chris@10 99 TP = TL + TO;
Chris@10 100 T1p = T3 - T6;
Chris@10 101 T7 = T3 + T6;
Chris@10 102 T1g = Ts - Tt;
Chris@10 103 Tu = Ts + Tt;
Chris@10 104 T9 = Rm[WS(rs, 2)];
Chris@10 105 Tx = Ip[WS(rs, 1)];
Chris@10 106 T1h = T1f + T1g;
Chris@10 107 T1v = T1f - T1g;
Chris@10 108 TZ = Tr + Tu;
Chris@10 109 Tv = Tr - Tu;
Chris@10 110 Tw = T8 - T9;
Chris@10 111 Ta = T8 + T9;
Chris@10 112 Ty = Im[WS(rs, 2)];
Chris@10 113 }
Chris@10 114 Tb = Rm[0];
Chris@10 115 Tc = Rp[WS(rs, 3)];
Chris@10 116 TC = Ip[WS(rs, 3)];
Chris@10 117 T1i = Tx - Ty;
Chris@10 118 Tz = Tx + Ty;
Chris@10 119 TB = Tb - Tc;
Chris@10 120 Td = Tb + Tc;
Chris@10 121 TD = Im[0];
Chris@10 122 }
Chris@10 123 TA = Tw - Tz;
Chris@10 124 TQ = Tw + Tz;
Chris@10 125 Te = Ta + Td;
Chris@10 126 T1w = Ta - Td;
Chris@10 127 TE = TC + TD;
Chris@10 128 T1j = TC - TD;
Chris@10 129 }
Chris@10 130 }
Chris@10 131 {
Chris@10 132 E T1x, T1k, T1r, TG, TS, T19, T15, T17, T11, T16, T12;
Chris@10 133 {
Chris@10 134 E T1B, T1z, T10, T1A, T1C;
Chris@10 135 T1x = T1v - T1w;
Chris@10 136 T1B = T1w + T1v;
Chris@10 137 Rp[0] = T7 + Te;
Chris@10 138 {
Chris@10 139 E T1q, TR, TF, T14;
Chris@10 140 T1k = T1i + T1j;
Chris@10 141 T1q = T1j - T1i;
Chris@10 142 TR = TB + TE;
Chris@10 143 TF = TB - TE;
Chris@10 144 T1r = T1p - T1q;
Chris@10 145 T1z = T1p + T1q;
Chris@10 146 Rm[0] = T1h + T1k;
Chris@10 147 TG = TA + TF;
Chris@10 148 T14 = TA - TF;
Chris@10 149 TS = TQ - TR;
Chris@10 150 T10 = TQ + TR;
Chris@10 151 T1A = Tk * T1z;
Chris@10 152 T19 = FNMS(KP707106781, T14, T13);
Chris@10 153 T15 = FMA(KP707106781, T14, T13);
Chris@10 154 T1C = Tk * T1B;
Chris@10 155 }
Chris@10 156 T17 = FMA(KP707106781, T10, TZ);
Chris@10 157 T11 = FNMS(KP707106781, T10, TZ);
Chris@10 158 Rp[WS(rs, 1)] = FNMS(To, T1B, T1A);
Chris@10 159 T16 = Tg * T15;
Chris@10 160 Rm[WS(rs, 1)] = FMA(To, T1z, T1C);
Chris@10 161 }
Chris@10 162 T12 = Tg * T11;
Chris@10 163 {
Chris@10 164 E T1l, T1a, T1c, T18;
Chris@10 165 Im[WS(rs, 1)] = FMA(Tj, T11, T16);
Chris@10 166 Ip[WS(rs, 1)] = FNMS(Tj, T15, T12);
Chris@10 167 T18 = Tl * T17;
Chris@10 168 T1l = T1h - T1k;
Chris@10 169 T1a = Tl * T19;
Chris@10 170 T1c = T7 - Te;
Chris@10 171 Ip[WS(rs, 3)] = FNMS(Tp, T19, T18);
Chris@10 172 {
Chris@10 173 E T1s, T1m, T1d, T1y, TV;
Chris@10 174 Im[WS(rs, 3)] = FMA(Tp, T17, T1a);
Chris@10 175 T1m = T1e * T1c;
Chris@10 176 T1d = T1b * T1c;
Chris@10 177 T1s = T1o * T1r;
Chris@10 178 Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m);
Chris@10 179 Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d);
Chris@10 180 Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s);
Chris@10 181 T1y = T1o * T1x;
Chris@10 182 TV = FMA(KP707106781, TG, Tv);
Chris@10 183 TH = FNMS(KP707106781, TG, Tv);
Chris@10 184 TT = FNMS(KP707106781, TS, TP);
Chris@10 185 TX = FMA(KP707106781, TS, TP);
Chris@10 186 Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y);
Chris@10 187 TW = Tf * TV;
Chris@10 188 TY = Ti * TV;
Chris@10 189 }
Chris@10 190 }
Chris@10 191 }
Chris@10 192 }
Chris@10 193 }
Chris@10 194 Ip[0] = FNMS(Ti, TX, TW);
Chris@10 195 Im[0] = FMA(Tf, TX, TY);
Chris@10 196 TU = TK * TH;
Chris@10 197 TI = Tq * TH;
Chris@10 198 Im[WS(rs, 2)] = FMA(Tq, TT, TU);
Chris@10 199 Ip[WS(rs, 2)] = FNMS(TK, TT, TI);
Chris@10 200 }
Chris@10 201 }
Chris@10 202 }
Chris@10 203
Chris@10 204 static const tw_instr twinstr[] = {
Chris@10 205 {TW_CEXP, 1, 1},
Chris@10 206 {TW_CEXP, 1, 3},
Chris@10 207 {TW_CEXP, 1, 7},
Chris@10 208 {TW_NEXT, 1, 0}
Chris@10 209 };
Chris@10 210
Chris@10 211 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
Chris@10 212
Chris@10 213 void X(codelet_hc2cb2_8) (planner *p) {
Chris@10 214 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
Chris@10 215 }
Chris@10 216 #else /* HAVE_FMA */
Chris@10 217
Chris@10 218 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
Chris@10 219
Chris@10 220 /*
Chris@10 221 * This function contains 74 FP additions, 44 FP multiplications,
Chris@10 222 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
Chris@10 223 * 46 stack variables, 1 constants, and 32 memory accesses
Chris@10 224 */
Chris@10 225 #include "hc2cb.h"
Chris@10 226
Chris@10 227 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 228 {
Chris@10 229 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 230 {
Chris@10 231 INT m;
Chris@10 232 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 233 E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
Chris@10 234 {
Chris@10 235 E Th, To, Tk, Tn;
Chris@10 236 Tf = W[0];
Chris@10 237 Ti = W[1];
Chris@10 238 Tg = W[2];
Chris@10 239 Tj = W[3];
Chris@10 240 Th = Tf * Tg;
Chris@10 241 To = Ti * Tg;
Chris@10 242 Tk = Ti * Tj;
Chris@10 243 Tn = Tf * Tj;
Chris@10 244 Tl = Th - Tk;
Chris@10 245 Tp = Tn + To;
Chris@10 246 TP = Th + Tk;
Chris@10 247 TR = Tn - To;
Chris@10 248 TF = W[4];
Chris@10 249 TG = W[5];
Chris@10 250 TH = FMA(Tf, TF, Ti * TG);
Chris@10 251 T15 = FNMS(TR, TF, TP * TG);
Chris@10 252 TL = FNMS(Ti, TF, Tf * TG);
Chris@10 253 TT = FMA(TP, TF, TR * TG);
Chris@10 254 }
Chris@10 255 {
Chris@10 256 E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
Chris@10 257 E TN, Tm, TE;
Chris@10 258 {
Chris@10 259 E T3, TU, Ts, T17, T6, T16, Tv, TV;
Chris@10 260 {
Chris@10 261 E T1, T2, Tq, Tr;
Chris@10 262 T1 = Rp[0];
Chris@10 263 T2 = Rm[WS(rs, 3)];
Chris@10 264 T3 = T1 + T2;
Chris@10 265 TU = T1 - T2;
Chris@10 266 Tq = Ip[0];
Chris@10 267 Tr = Im[WS(rs, 3)];
Chris@10 268 Ts = Tq - Tr;
Chris@10 269 T17 = Tq + Tr;
Chris@10 270 }
Chris@10 271 {
Chris@10 272 E T4, T5, Tt, Tu;
Chris@10 273 T4 = Rp[WS(rs, 2)];
Chris@10 274 T5 = Rm[WS(rs, 1)];
Chris@10 275 T6 = T4 + T5;
Chris@10 276 T16 = T4 - T5;
Chris@10 277 Tt = Ip[WS(rs, 2)];
Chris@10 278 Tu = Im[WS(rs, 1)];
Chris@10 279 Tv = Tt - Tu;
Chris@10 280 TV = Tt + Tu;
Chris@10 281 }
Chris@10 282 T7 = T3 + T6;
Chris@10 283 T1f = TU + TV;
Chris@10 284 T1i = T17 - T16;
Chris@10 285 Tw = Ts + Tv;
Chris@10 286 TI = T3 - T6;
Chris@10 287 TW = TU - TV;
Chris@10 288 T18 = T16 + T17;
Chris@10 289 TM = Ts - Tv;
Chris@10 290 }
Chris@10 291 {
Chris@10 292 E Ta, TX, Tz, TY, Td, T10, TC, T11;
Chris@10 293 {
Chris@10 294 E T8, T9, Tx, Ty;
Chris@10 295 T8 = Rp[WS(rs, 1)];
Chris@10 296 T9 = Rm[WS(rs, 2)];
Chris@10 297 Ta = T8 + T9;
Chris@10 298 TX = T8 - T9;
Chris@10 299 Tx = Ip[WS(rs, 1)];
Chris@10 300 Ty = Im[WS(rs, 2)];
Chris@10 301 Tz = Tx - Ty;
Chris@10 302 TY = Tx + Ty;
Chris@10 303 }
Chris@10 304 {
Chris@10 305 E Tb, Tc, TA, TB;
Chris@10 306 Tb = Rm[0];
Chris@10 307 Tc = Rp[WS(rs, 3)];
Chris@10 308 Td = Tb + Tc;
Chris@10 309 T10 = Tb - Tc;
Chris@10 310 TA = Ip[WS(rs, 3)];
Chris@10 311 TB = Im[0];
Chris@10 312 TC = TA - TB;
Chris@10 313 T11 = TA + TB;
Chris@10 314 }
Chris@10 315 Te = Ta + Td;
Chris@10 316 T19 = TX + TY;
Chris@10 317 T1a = T10 + T11;
Chris@10 318 TD = Tz + TC;
Chris@10 319 TJ = TC - Tz;
Chris@10 320 TZ = TX - TY;
Chris@10 321 T12 = T10 - T11;
Chris@10 322 TN = Ta - Td;
Chris@10 323 }
Chris@10 324 Rp[0] = T7 + Te;
Chris@10 325 Rm[0] = Tw + TD;
Chris@10 326 Tm = T7 - Te;
Chris@10 327 TE = Tw - TD;
Chris@10 328 Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm);
Chris@10 329 Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE);
Chris@10 330 {
Chris@10 331 E TQ, TS, TK, TO;
Chris@10 332 TQ = TI + TJ;
Chris@10 333 TS = TN + TM;
Chris@10 334 Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
Chris@10 335 Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
Chris@10 336 TK = TI - TJ;
Chris@10 337 TO = TM - TN;
Chris@10 338 Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK);
Chris@10 339 Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK);
Chris@10 340 }
Chris@10 341 {
Chris@10 342 E T1h, T1l, T1k, T1m, T1g, T1j;
Chris@10 343 T1g = KP707106781 * (T19 + T1a);
Chris@10 344 T1h = T1f - T1g;
Chris@10 345 T1l = T1f + T1g;
Chris@10 346 T1j = KP707106781 * (TZ - T12);
Chris@10 347 T1k = T1i + T1j;
Chris@10 348 T1m = T1i - T1j;
Chris@10 349 Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h);
Chris@10 350 Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h);
Chris@10 351 Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l);
Chris@10 352 Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l);
Chris@10 353 }
Chris@10 354 {
Chris@10 355 E T14, T1d, T1c, T1e, T13, T1b;
Chris@10 356 T13 = KP707106781 * (TZ + T12);
Chris@10 357 T14 = TW - T13;
Chris@10 358 T1d = TW + T13;
Chris@10 359 T1b = KP707106781 * (T19 - T1a);
Chris@10 360 T1c = T18 - T1b;
Chris@10 361 T1e = T18 + T1b;
Chris@10 362 Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14);
Chris@10 363 Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c);
Chris@10 364 Ip[0] = FNMS(Ti, T1e, Tf * T1d);
Chris@10 365 Im[0] = FMA(Ti, T1d, Tf * T1e);
Chris@10 366 }
Chris@10 367 }
Chris@10 368 }
Chris@10 369 }
Chris@10 370 }
Chris@10 371
Chris@10 372 static const tw_instr twinstr[] = {
Chris@10 373 {TW_CEXP, 1, 1},
Chris@10 374 {TW_CEXP, 1, 3},
Chris@10 375 {TW_CEXP, 1, 7},
Chris@10 376 {TW_NEXT, 1, 0}
Chris@10 377 };
Chris@10 378
Chris@10 379 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
Chris@10 380
Chris@10 381 void X(codelet_hc2cb2_8) (planner *p) {
Chris@10 382 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
Chris@10 383 }
Chris@10 384 #endif /* HAVE_FMA */