Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:41:13 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 96 FP additions, 88 FP multiplications,
|
Chris@10
|
32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
|
Chris@10
|
33 * 69 stack variables, 10 constants, and 36 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hb.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DK(KP954188894, +0.954188894138671133499268364187245676532219158);
|
Chris@10
|
40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
41 DK(KP492403876, +0.492403876506104029683371512294761506835321626);
|
Chris@10
|
42 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
43 DK(KP777861913, +0.777861913430206160028177977318626690410586096);
|
Chris@10
|
44 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
|
Chris@10
|
45 DK(KP363970234, +0.363970234266202361351047882776834043890471784);
|
Chris@10
|
46 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
|
Chris@10
|
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
49 {
|
Chris@10
|
50 INT m;
|
Chris@10
|
51 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
|
Chris@10
|
52 E T1X, T1S, T1U, T1P, T1Y, T1T;
|
Chris@10
|
53 {
|
Chris@10
|
54 E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, TW, T13, T10, Tz, Tw, TT, T1K;
|
Chris@10
|
55 E T1B, T1L, T1E;
|
Chris@10
|
56 {
|
Chris@10
|
57 E T1, Th, T2, T3, Ti, Tj;
|
Chris@10
|
58 T1 = cr[0];
|
Chris@10
|
59 Th = ci[WS(rs, 8)];
|
Chris@10
|
60 T2 = cr[WS(rs, 3)];
|
Chris@10
|
61 T3 = ci[WS(rs, 2)];
|
Chris@10
|
62 Ti = ci[WS(rs, 5)];
|
Chris@10
|
63 Tj = cr[WS(rs, 6)];
|
Chris@10
|
64 {
|
Chris@10
|
65 E T12, Tb, TZ, TY, Ta, Tq, T11, Tr, Ts, TS, Te, Tt;
|
Chris@10
|
66 {
|
Chris@10
|
67 E T6, Tm, Tn, To, T9, Tc, Td, Tp;
|
Chris@10
|
68 {
|
Chris@10
|
69 E T7, T8, T1a, T4;
|
Chris@10
|
70 T6 = cr[WS(rs, 1)];
|
Chris@10
|
71 T1a = T2 - T3;
|
Chris@10
|
72 T4 = T2 + T3;
|
Chris@10
|
73 {
|
Chris@10
|
74 E TP, Tk, TO, T19;
|
Chris@10
|
75 TP = Ti + Tj;
|
Chris@10
|
76 Tk = Ti - Tj;
|
Chris@10
|
77 T7 = cr[WS(rs, 4)];
|
Chris@10
|
78 T5 = T1 + T4;
|
Chris@10
|
79 TO = FNMS(KP500000000, T4, T1);
|
Chris@10
|
80 Tl = Th + Tk;
|
Chris@10
|
81 T19 = FNMS(KP500000000, Tk, Th);
|
Chris@10
|
82 TQ = FNMS(KP866025403, TP, TO);
|
Chris@10
|
83 T1y = FMA(KP866025403, TP, TO);
|
Chris@10
|
84 T1b = FMA(KP866025403, T1a, T19);
|
Chris@10
|
85 T1J = FNMS(KP866025403, T1a, T19);
|
Chris@10
|
86 T8 = ci[WS(rs, 1)];
|
Chris@10
|
87 }
|
Chris@10
|
88 Tm = ci[WS(rs, 7)];
|
Chris@10
|
89 Tn = ci[WS(rs, 4)];
|
Chris@10
|
90 To = cr[WS(rs, 7)];
|
Chris@10
|
91 T9 = T7 + T8;
|
Chris@10
|
92 T12 = T7 - T8;
|
Chris@10
|
93 }
|
Chris@10
|
94 Tb = cr[WS(rs, 2)];
|
Chris@10
|
95 TZ = Tn + To;
|
Chris@10
|
96 Tp = Tn - To;
|
Chris@10
|
97 TY = FNMS(KP500000000, T9, T6);
|
Chris@10
|
98 Ta = T6 + T9;
|
Chris@10
|
99 Tc = ci[WS(rs, 3)];
|
Chris@10
|
100 Td = ci[0];
|
Chris@10
|
101 Tq = Tm + Tp;
|
Chris@10
|
102 T11 = FMS(KP500000000, Tp, Tm);
|
Chris@10
|
103 Tr = ci[WS(rs, 6)];
|
Chris@10
|
104 Ts = cr[WS(rs, 5)];
|
Chris@10
|
105 TS = Td - Tc;
|
Chris@10
|
106 Te = Tc + Td;
|
Chris@10
|
107 Tt = cr[WS(rs, 8)];
|
Chris@10
|
108 }
|
Chris@10
|
109 {
|
Chris@10
|
110 E T1C, Tv, TR, T1D, T1z, T1A;
|
Chris@10
|
111 {
|
Chris@10
|
112 E TU, Tu, TV, Tf;
|
Chris@10
|
113 TU = FNMS(KP500000000, Te, Tb);
|
Chris@10
|
114 Tf = Tb + Te;
|
Chris@10
|
115 Tu = Ts + Tt;
|
Chris@10
|
116 TV = Ts - Tt;
|
Chris@10
|
117 Tg = Ta + Tf;
|
Chris@10
|
118 TE = Ta - Tf;
|
Chris@10
|
119 TW = FMA(KP866025403, TV, TU);
|
Chris@10
|
120 T1C = FNMS(KP866025403, TV, TU);
|
Chris@10
|
121 Tv = Tr - Tu;
|
Chris@10
|
122 TR = FMA(KP500000000, Tu, Tr);
|
Chris@10
|
123 }
|
Chris@10
|
124 T1z = FMA(KP866025403, T12, T11);
|
Chris@10
|
125 T13 = FNMS(KP866025403, T12, T11);
|
Chris@10
|
126 T10 = FNMS(KP866025403, TZ, TY);
|
Chris@10
|
127 T1A = FMA(KP866025403, TZ, TY);
|
Chris@10
|
128 Tz = Tv - Tq;
|
Chris@10
|
129 Tw = Tq + Tv;
|
Chris@10
|
130 T1D = FMA(KP866025403, TS, TR);
|
Chris@10
|
131 TT = FNMS(KP866025403, TS, TR);
|
Chris@10
|
132 T1K = FNMS(KP176326980, T1z, T1A);
|
Chris@10
|
133 T1B = FMA(KP176326980, T1A, T1z);
|
Chris@10
|
134 T1L = FNMS(KP363970234, T1C, T1D);
|
Chris@10
|
135 T1E = FMA(KP363970234, T1D, T1C);
|
Chris@10
|
136 }
|
Chris@10
|
137 }
|
Chris@10
|
138 }
|
Chris@10
|
139 {
|
Chris@10
|
140 E T1d, T14, T1c, TX;
|
Chris@10
|
141 cr[0] = T5 + Tg;
|
Chris@10
|
142 T1d = FNMS(KP839099631, T10, T13);
|
Chris@10
|
143 T14 = FMA(KP839099631, T13, T10);
|
Chris@10
|
144 T1c = FMA(KP176326980, TT, TW);
|
Chris@10
|
145 TX = FNMS(KP176326980, TW, TT);
|
Chris@10
|
146 ci[0] = Tl + Tw;
|
Chris@10
|
147 {
|
Chris@10
|
148 E TL, TK, TJ, Ty, TD;
|
Chris@10
|
149 Ty = FNMS(KP500000000, Tg, T5);
|
Chris@10
|
150 TD = FNMS(KP500000000, Tw, Tl);
|
Chris@10
|
151 {
|
Chris@10
|
152 E Tx, TC, TA, TI, TF;
|
Chris@10
|
153 Tx = W[10];
|
Chris@10
|
154 TC = W[11];
|
Chris@10
|
155 TA = FNMS(KP866025403, Tz, Ty);
|
Chris@10
|
156 TI = FMA(KP866025403, Tz, Ty);
|
Chris@10
|
157 TF = FNMS(KP866025403, TE, TD);
|
Chris@10
|
158 TL = FMA(KP866025403, TE, TD);
|
Chris@10
|
159 {
|
Chris@10
|
160 E TH, TB, TG, TM;
|
Chris@10
|
161 TH = W[4];
|
Chris@10
|
162 TB = Tx * TA;
|
Chris@10
|
163 TK = W[5];
|
Chris@10
|
164 TG = Tx * TF;
|
Chris@10
|
165 TM = TH * TL;
|
Chris@10
|
166 TJ = TH * TI;
|
Chris@10
|
167 cr[WS(rs, 6)] = FNMS(TC, TF, TB);
|
Chris@10
|
168 ci[WS(rs, 6)] = FMA(TC, TA, TG);
|
Chris@10
|
169 ci[WS(rs, 3)] = FMA(TK, TI, TM);
|
Chris@10
|
170 }
|
Chris@10
|
171 }
|
Chris@10
|
172 cr[WS(rs, 3)] = FNMS(TK, TL, TJ);
|
Chris@10
|
173 {
|
Chris@10
|
174 E T1k, T1p, T1l, T1q, T1m;
|
Chris@10
|
175 {
|
Chris@10
|
176 E T1e, T1j, T15, T1o;
|
Chris@10
|
177 T1e = FNMS(KP777861913, T1d, T1c);
|
Chris@10
|
178 T1j = FMA(KP777861913, T1d, T1c);
|
Chris@10
|
179 T15 = FNMS(KP777861913, T14, TX);
|
Chris@10
|
180 T1o = FMA(KP777861913, T14, TX);
|
Chris@10
|
181 {
|
Chris@10
|
182 E TN, T16, T1f, T17, T1s, T1v, T18, T1i, T1n, T1r, T1u;
|
Chris@10
|
183 TN = W[0];
|
Chris@10
|
184 T16 = FNMS(KP984807753, T15, TQ);
|
Chris@10
|
185 T1i = FMA(KP492403876, T15, TQ);
|
Chris@10
|
186 T1f = FMA(KP984807753, T1e, T1b);
|
Chris@10
|
187 T1n = FNMS(KP492403876, T1e, T1b);
|
Chris@10
|
188 T17 = TN * T16;
|
Chris@10
|
189 T1s = FMA(KP852868531, T1j, T1i);
|
Chris@10
|
190 T1k = FNMS(KP852868531, T1j, T1i);
|
Chris@10
|
191 T1v = FMA(KP852868531, T1o, T1n);
|
Chris@10
|
192 T1p = FNMS(KP852868531, T1o, T1n);
|
Chris@10
|
193 T18 = W[1];
|
Chris@10
|
194 T1r = W[6];
|
Chris@10
|
195 T1u = W[7];
|
Chris@10
|
196 {
|
Chris@10
|
197 E T1h, T1g, T1w, T1t;
|
Chris@10
|
198 T1h = W[12];
|
Chris@10
|
199 cr[WS(rs, 1)] = FNMS(T18, T1f, T17);
|
Chris@10
|
200 T1g = T18 * T16;
|
Chris@10
|
201 T1w = T1r * T1v;
|
Chris@10
|
202 T1t = T1r * T1s;
|
Chris@10
|
203 T1l = T1h * T1k;
|
Chris@10
|
204 ci[WS(rs, 1)] = FMA(TN, T1f, T1g);
|
Chris@10
|
205 ci[WS(rs, 4)] = FMA(T1u, T1s, T1w);
|
Chris@10
|
206 cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t);
|
Chris@10
|
207 T1q = T1h * T1p;
|
Chris@10
|
208 }
|
Chris@10
|
209 T1m = W[13];
|
Chris@10
|
210 }
|
Chris@10
|
211 }
|
Chris@10
|
212 {
|
Chris@10
|
213 E T1F, T1W, T1R, T1V, T1N, T1M, T1x, T1I;
|
Chris@10
|
214 T1F = FNMS(KP954188894, T1E, T1B);
|
Chris@10
|
215 T1W = FMA(KP954188894, T1E, T1B);
|
Chris@10
|
216 T1M = FNMS(KP954188894, T1L, T1K);
|
Chris@10
|
217 T1R = FMA(KP954188894, T1L, T1K);
|
Chris@10
|
218 ci[WS(rs, 7)] = FMA(T1m, T1k, T1q);
|
Chris@10
|
219 cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l);
|
Chris@10
|
220 T1V = FNMS(KP492403876, T1M, T1J);
|
Chris@10
|
221 T1N = FMA(KP984807753, T1M, T1J);
|
Chris@10
|
222 T1x = W[2];
|
Chris@10
|
223 T1I = W[3];
|
Chris@10
|
224 {
|
Chris@10
|
225 E T23, T22, T20, T1Z, T24, T21;
|
Chris@10
|
226 T1X = FMA(KP852868531, T1W, T1V);
|
Chris@10
|
227 T23 = FNMS(KP852868531, T1W, T1V);
|
Chris@10
|
228 {
|
Chris@10
|
229 E T1G, T1Q, T1O, T1H;
|
Chris@10
|
230 T1G = FMA(KP984807753, T1F, T1y);
|
Chris@10
|
231 T1Q = FNMS(KP492403876, T1F, T1y);
|
Chris@10
|
232 T1O = T1x * T1N;
|
Chris@10
|
233 T22 = W[15];
|
Chris@10
|
234 T1H = T1x * T1G;
|
Chris@10
|
235 T20 = FMA(KP852868531, T1R, T1Q);
|
Chris@10
|
236 T1S = FNMS(KP852868531, T1R, T1Q);
|
Chris@10
|
237 ci[WS(rs, 2)] = FMA(T1I, T1G, T1O);
|
Chris@10
|
238 cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H);
|
Chris@10
|
239 T1Z = W[14];
|
Chris@10
|
240 T24 = T22 * T20;
|
Chris@10
|
241 }
|
Chris@10
|
242 T1U = W[9];
|
Chris@10
|
243 T21 = T1Z * T20;
|
Chris@10
|
244 ci[WS(rs, 8)] = FMA(T1Z, T23, T24);
|
Chris@10
|
245 T1P = W[8];
|
Chris@10
|
246 T1Y = T1U * T1S;
|
Chris@10
|
247 cr[WS(rs, 8)] = FNMS(T22, T23, T21);
|
Chris@10
|
248 }
|
Chris@10
|
249 }
|
Chris@10
|
250 }
|
Chris@10
|
251 }
|
Chris@10
|
252 }
|
Chris@10
|
253 }
|
Chris@10
|
254 T1T = T1P * T1S;
|
Chris@10
|
255 ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y);
|
Chris@10
|
256 cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T);
|
Chris@10
|
257 }
|
Chris@10
|
258 }
|
Chris@10
|
259 }
|
Chris@10
|
260
|
Chris@10
|
261 static const tw_instr twinstr[] = {
|
Chris@10
|
262 {TW_FULL, 1, 9},
|
Chris@10
|
263 {TW_NEXT, 1, 0}
|
Chris@10
|
264 };
|
Chris@10
|
265
|
Chris@10
|
266 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} };
|
Chris@10
|
267
|
Chris@10
|
268 void X(codelet_hb_9) (planner *p) {
|
Chris@10
|
269 X(khc2hc_register) (p, hb_9, &desc);
|
Chris@10
|
270 }
|
Chris@10
|
271 #else /* HAVE_FMA */
|
Chris@10
|
272
|
Chris@10
|
273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */
|
Chris@10
|
274
|
Chris@10
|
275 /*
|
Chris@10
|
276 * This function contains 96 FP additions, 72 FP multiplications,
|
Chris@10
|
277 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
|
Chris@10
|
278 * 53 stack variables, 8 constants, and 36 memory accesses
|
Chris@10
|
279 */
|
Chris@10
|
280 #include "hb.h"
|
Chris@10
|
281
|
Chris@10
|
282 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
283 {
|
Chris@10
|
284 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
285 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
Chris@10
|
286 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
Chris@10
|
287 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
288 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
Chris@10
|
289 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
Chris@10
|
290 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
291 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
292 {
|
Chris@10
|
293 INT m;
|
Chris@10
|
294 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
|
Chris@10
|
295 E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u;
|
Chris@10
|
296 E T1A, T1r, T1z, T10, T18;
|
Chris@10
|
297 {
|
Chris@10
|
298 E T1, Th, T4, T14, Tk, TL, TK, T15;
|
Chris@10
|
299 T1 = cr[0];
|
Chris@10
|
300 Th = ci[WS(rs, 8)];
|
Chris@10
|
301 {
|
Chris@10
|
302 E T2, T3, Ti, Tj;
|
Chris@10
|
303 T2 = cr[WS(rs, 3)];
|
Chris@10
|
304 T3 = ci[WS(rs, 2)];
|
Chris@10
|
305 T4 = T2 + T3;
|
Chris@10
|
306 T14 = KP866025403 * (T2 - T3);
|
Chris@10
|
307 Ti = ci[WS(rs, 5)];
|
Chris@10
|
308 Tj = cr[WS(rs, 6)];
|
Chris@10
|
309 Tk = Ti - Tj;
|
Chris@10
|
310 TL = KP866025403 * (Ti + Tj);
|
Chris@10
|
311 }
|
Chris@10
|
312 T5 = T1 + T4;
|
Chris@10
|
313 Tl = Th + Tk;
|
Chris@10
|
314 TK = FNMS(KP500000000, T4, T1);
|
Chris@10
|
315 TM = TK - TL;
|
Chris@10
|
316 T1o = TK + TL;
|
Chris@10
|
317 T15 = FNMS(KP500000000, Tk, Th);
|
Chris@10
|
318 T16 = T14 + T15;
|
Chris@10
|
319 T1y = T15 - T14;
|
Chris@10
|
320 }
|
Chris@10
|
321 {
|
Chris@10
|
322 E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV;
|
Chris@10
|
323 E TY;
|
Chris@10
|
324 {
|
Chris@10
|
325 E T7, T8, Tn, To;
|
Chris@10
|
326 T6 = cr[WS(rs, 1)];
|
Chris@10
|
327 T7 = cr[WS(rs, 4)];
|
Chris@10
|
328 T8 = ci[WS(rs, 1)];
|
Chris@10
|
329 T9 = T7 + T8;
|
Chris@10
|
330 TN = FNMS(KP500000000, T9, T6);
|
Chris@10
|
331 TQ = KP866025403 * (T7 - T8);
|
Chris@10
|
332 Tm = ci[WS(rs, 7)];
|
Chris@10
|
333 Tn = ci[WS(rs, 4)];
|
Chris@10
|
334 To = cr[WS(rs, 7)];
|
Chris@10
|
335 Tp = Tn - To;
|
Chris@10
|
336 TO = KP866025403 * (Tn + To);
|
Chris@10
|
337 TR = FNMS(KP500000000, Tp, Tm);
|
Chris@10
|
338 }
|
Chris@10
|
339 {
|
Chris@10
|
340 E Tc, Td, Ts, Tt;
|
Chris@10
|
341 Tb = cr[WS(rs, 2)];
|
Chris@10
|
342 Tc = ci[WS(rs, 3)];
|
Chris@10
|
343 Td = ci[0];
|
Chris@10
|
344 Te = Tc + Td;
|
Chris@10
|
345 TU = FNMS(KP500000000, Te, Tb);
|
Chris@10
|
346 TX = KP866025403 * (Tc - Td);
|
Chris@10
|
347 Tr = ci[WS(rs, 6)];
|
Chris@10
|
348 Ts = cr[WS(rs, 5)];
|
Chris@10
|
349 Tt = cr[WS(rs, 8)];
|
Chris@10
|
350 Tu = Ts + Tt;
|
Chris@10
|
351 TV = KP866025403 * (Ts - Tt);
|
Chris@10
|
352 TY = FMA(KP500000000, Tu, Tr);
|
Chris@10
|
353 }
|
Chris@10
|
354 {
|
Chris@10
|
355 E TP, TS, T1s, T1t;
|
Chris@10
|
356 Ta = T6 + T9;
|
Chris@10
|
357 Tf = Tb + Te;
|
Chris@10
|
358 Tg = Ta + Tf;
|
Chris@10
|
359 Tq = Tm + Tp;
|
Chris@10
|
360 Tv = Tr - Tu;
|
Chris@10
|
361 Tw = Tq + Tv;
|
Chris@10
|
362 TP = TN - TO;
|
Chris@10
|
363 TS = TQ + TR;
|
Chris@10
|
364 TT = FNMS(KP642787609, TS, KP766044443 * TP);
|
Chris@10
|
365 T17 = FMA(KP766044443, TS, KP642787609 * TP);
|
Chris@10
|
366 T1s = TU - TV;
|
Chris@10
|
367 T1t = TY - TX;
|
Chris@10
|
368 T1u = FMA(KP939692620, T1s, KP342020143 * T1t);
|
Chris@10
|
369 T1A = FNMS(KP939692620, T1t, KP342020143 * T1s);
|
Chris@10
|
370 {
|
Chris@10
|
371 E T1p, T1q, TW, TZ;
|
Chris@10
|
372 T1p = TN + TO;
|
Chris@10
|
373 T1q = TR - TQ;
|
Chris@10
|
374 T1r = FNMS(KP984807753, T1q, KP173648177 * T1p);
|
Chris@10
|
375 T1z = FMA(KP173648177, T1q, KP984807753 * T1p);
|
Chris@10
|
376 TW = TU + TV;
|
Chris@10
|
377 TZ = TX + TY;
|
Chris@10
|
378 T10 = FNMS(KP984807753, TZ, KP173648177 * TW);
|
Chris@10
|
379 T18 = FMA(KP984807753, TW, KP173648177 * TZ);
|
Chris@10
|
380 }
|
Chris@10
|
381 }
|
Chris@10
|
382 }
|
Chris@10
|
383 cr[0] = T5 + Tg;
|
Chris@10
|
384 ci[0] = Tl + Tw;
|
Chris@10
|
385 {
|
Chris@10
|
386 E TA, TG, TE, TI;
|
Chris@10
|
387 {
|
Chris@10
|
388 E Ty, Tz, TC, TD;
|
Chris@10
|
389 Ty = FNMS(KP500000000, Tg, T5);
|
Chris@10
|
390 Tz = KP866025403 * (Tv - Tq);
|
Chris@10
|
391 TA = Ty - Tz;
|
Chris@10
|
392 TG = Ty + Tz;
|
Chris@10
|
393 TC = FNMS(KP500000000, Tw, Tl);
|
Chris@10
|
394 TD = KP866025403 * (Ta - Tf);
|
Chris@10
|
395 TE = TC - TD;
|
Chris@10
|
396 TI = TD + TC;
|
Chris@10
|
397 }
|
Chris@10
|
398 {
|
Chris@10
|
399 E Tx, TB, TF, TH;
|
Chris@10
|
400 Tx = W[10];
|
Chris@10
|
401 TB = W[11];
|
Chris@10
|
402 cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
|
Chris@10
|
403 ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
|
Chris@10
|
404 TF = W[4];
|
Chris@10
|
405 TH = W[5];
|
Chris@10
|
406 cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG);
|
Chris@10
|
407 ci[WS(rs, 3)] = FMA(TF, TI, TH * TG);
|
Chris@10
|
408 }
|
Chris@10
|
409 }
|
Chris@10
|
410 {
|
Chris@10
|
411 E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13;
|
Chris@10
|
412 T1d = KP866025403 * (T18 - T17);
|
Chris@10
|
413 T1h = KP866025403 * (TT - T10);
|
Chris@10
|
414 T11 = TT + T10;
|
Chris@10
|
415 T12 = TM + T11;
|
Chris@10
|
416 T1c = FNMS(KP500000000, T11, TM);
|
Chris@10
|
417 T19 = T17 + T18;
|
Chris@10
|
418 T1a = T16 + T19;
|
Chris@10
|
419 T1g = FNMS(KP500000000, T19, T16);
|
Chris@10
|
420 TJ = W[0];
|
Chris@10
|
421 T13 = W[1];
|
Chris@10
|
422 cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12);
|
Chris@10
|
423 ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a);
|
Chris@10
|
424 {
|
Chris@10
|
425 E T1k, T1m, T1j, T1l;
|
Chris@10
|
426 T1k = T1c + T1d;
|
Chris@10
|
427 T1m = T1h + T1g;
|
Chris@10
|
428 T1j = W[6];
|
Chris@10
|
429 T1l = W[7];
|
Chris@10
|
430 cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k);
|
Chris@10
|
431 ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k);
|
Chris@10
|
432 }
|
Chris@10
|
433 {
|
Chris@10
|
434 E T1e, T1i, T1b, T1f;
|
Chris@10
|
435 T1e = T1c - T1d;
|
Chris@10
|
436 T1i = T1g - T1h;
|
Chris@10
|
437 T1b = W[12];
|
Chris@10
|
438 T1f = W[13];
|
Chris@10
|
439 cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e);
|
Chris@10
|
440 ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e);
|
Chris@10
|
441 }
|
Chris@10
|
442 }
|
Chris@10
|
443 {
|
Chris@10
|
444 E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x;
|
Chris@10
|
445 T1F = KP866025403 * (T1A - T1z);
|
Chris@10
|
446 T1J = KP866025403 * (T1r + T1u);
|
Chris@10
|
447 T1v = T1r - T1u;
|
Chris@10
|
448 T1w = T1o + T1v;
|
Chris@10
|
449 T1E = FNMS(KP500000000, T1v, T1o);
|
Chris@10
|
450 T1B = T1z + T1A;
|
Chris@10
|
451 T1C = T1y + T1B;
|
Chris@10
|
452 T1I = FNMS(KP500000000, T1B, T1y);
|
Chris@10
|
453 T1n = W[2];
|
Chris@10
|
454 T1x = W[3];
|
Chris@10
|
455 cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w);
|
Chris@10
|
456 ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w);
|
Chris@10
|
457 {
|
Chris@10
|
458 E T1M, T1O, T1L, T1N;
|
Chris@10
|
459 T1M = T1F + T1E;
|
Chris@10
|
460 T1O = T1I + T1J;
|
Chris@10
|
461 T1L = W[8];
|
Chris@10
|
462 T1N = W[9];
|
Chris@10
|
463 cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M);
|
Chris@10
|
464 ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O);
|
Chris@10
|
465 }
|
Chris@10
|
466 {
|
Chris@10
|
467 E T1G, T1K, T1D, T1H;
|
Chris@10
|
468 T1G = T1E - T1F;
|
Chris@10
|
469 T1K = T1I - T1J;
|
Chris@10
|
470 T1D = W[14];
|
Chris@10
|
471 T1H = W[15];
|
Chris@10
|
472 cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G);
|
Chris@10
|
473 ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K);
|
Chris@10
|
474 }
|
Chris@10
|
475 }
|
Chris@10
|
476 }
|
Chris@10
|
477 }
|
Chris@10
|
478 }
|
Chris@10
|
479
|
Chris@10
|
480 static const tw_instr twinstr[] = {
|
Chris@10
|
481 {TW_FULL, 1, 9},
|
Chris@10
|
482 {TW_NEXT, 1, 0}
|
Chris@10
|
483 };
|
Chris@10
|
484
|
Chris@10
|
485 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} };
|
Chris@10
|
486
|
Chris@10
|
487 void X(codelet_hb_9) (planner *p) {
|
Chris@10
|
488 X(khc2hc_register) (p, hb_9, &desc);
|
Chris@10
|
489 }
|
Chris@10
|
490 #endif /* HAVE_FMA */
|