annotate src/fftw-3.3.3/rdft/scalar/r2cb/hb_9.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:13 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 96 FP additions, 88 FP multiplications,
Chris@10 32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
Chris@10 33 * 69 stack variables, 10 constants, and 36 memory accesses
Chris@10 34 */
Chris@10 35 #include "hb.h"
Chris@10 36
Chris@10 37 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP954188894, +0.954188894138671133499268364187245676532219158);
Chris@10 40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@10 41 DK(KP492403876, +0.492403876506104029683371512294761506835321626);
Chris@10 42 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 43 DK(KP777861913, +0.777861913430206160028177977318626690410586096);
Chris@10 44 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
Chris@10 45 DK(KP363970234, +0.363970234266202361351047882776834043890471784);
Chris@10 46 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
Chris@10 47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 49 {
Chris@10 50 INT m;
Chris@10 51 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
Chris@10 52 E T1X, T1S, T1U, T1P, T1Y, T1T;
Chris@10 53 {
Chris@10 54 E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, TW, T13, T10, Tz, Tw, TT, T1K;
Chris@10 55 E T1B, T1L, T1E;
Chris@10 56 {
Chris@10 57 E T1, Th, T2, T3, Ti, Tj;
Chris@10 58 T1 = cr[0];
Chris@10 59 Th = ci[WS(rs, 8)];
Chris@10 60 T2 = cr[WS(rs, 3)];
Chris@10 61 T3 = ci[WS(rs, 2)];
Chris@10 62 Ti = ci[WS(rs, 5)];
Chris@10 63 Tj = cr[WS(rs, 6)];
Chris@10 64 {
Chris@10 65 E T12, Tb, TZ, TY, Ta, Tq, T11, Tr, Ts, TS, Te, Tt;
Chris@10 66 {
Chris@10 67 E T6, Tm, Tn, To, T9, Tc, Td, Tp;
Chris@10 68 {
Chris@10 69 E T7, T8, T1a, T4;
Chris@10 70 T6 = cr[WS(rs, 1)];
Chris@10 71 T1a = T2 - T3;
Chris@10 72 T4 = T2 + T3;
Chris@10 73 {
Chris@10 74 E TP, Tk, TO, T19;
Chris@10 75 TP = Ti + Tj;
Chris@10 76 Tk = Ti - Tj;
Chris@10 77 T7 = cr[WS(rs, 4)];
Chris@10 78 T5 = T1 + T4;
Chris@10 79 TO = FNMS(KP500000000, T4, T1);
Chris@10 80 Tl = Th + Tk;
Chris@10 81 T19 = FNMS(KP500000000, Tk, Th);
Chris@10 82 TQ = FNMS(KP866025403, TP, TO);
Chris@10 83 T1y = FMA(KP866025403, TP, TO);
Chris@10 84 T1b = FMA(KP866025403, T1a, T19);
Chris@10 85 T1J = FNMS(KP866025403, T1a, T19);
Chris@10 86 T8 = ci[WS(rs, 1)];
Chris@10 87 }
Chris@10 88 Tm = ci[WS(rs, 7)];
Chris@10 89 Tn = ci[WS(rs, 4)];
Chris@10 90 To = cr[WS(rs, 7)];
Chris@10 91 T9 = T7 + T8;
Chris@10 92 T12 = T7 - T8;
Chris@10 93 }
Chris@10 94 Tb = cr[WS(rs, 2)];
Chris@10 95 TZ = Tn + To;
Chris@10 96 Tp = Tn - To;
Chris@10 97 TY = FNMS(KP500000000, T9, T6);
Chris@10 98 Ta = T6 + T9;
Chris@10 99 Tc = ci[WS(rs, 3)];
Chris@10 100 Td = ci[0];
Chris@10 101 Tq = Tm + Tp;
Chris@10 102 T11 = FMS(KP500000000, Tp, Tm);
Chris@10 103 Tr = ci[WS(rs, 6)];
Chris@10 104 Ts = cr[WS(rs, 5)];
Chris@10 105 TS = Td - Tc;
Chris@10 106 Te = Tc + Td;
Chris@10 107 Tt = cr[WS(rs, 8)];
Chris@10 108 }
Chris@10 109 {
Chris@10 110 E T1C, Tv, TR, T1D, T1z, T1A;
Chris@10 111 {
Chris@10 112 E TU, Tu, TV, Tf;
Chris@10 113 TU = FNMS(KP500000000, Te, Tb);
Chris@10 114 Tf = Tb + Te;
Chris@10 115 Tu = Ts + Tt;
Chris@10 116 TV = Ts - Tt;
Chris@10 117 Tg = Ta + Tf;
Chris@10 118 TE = Ta - Tf;
Chris@10 119 TW = FMA(KP866025403, TV, TU);
Chris@10 120 T1C = FNMS(KP866025403, TV, TU);
Chris@10 121 Tv = Tr - Tu;
Chris@10 122 TR = FMA(KP500000000, Tu, Tr);
Chris@10 123 }
Chris@10 124 T1z = FMA(KP866025403, T12, T11);
Chris@10 125 T13 = FNMS(KP866025403, T12, T11);
Chris@10 126 T10 = FNMS(KP866025403, TZ, TY);
Chris@10 127 T1A = FMA(KP866025403, TZ, TY);
Chris@10 128 Tz = Tv - Tq;
Chris@10 129 Tw = Tq + Tv;
Chris@10 130 T1D = FMA(KP866025403, TS, TR);
Chris@10 131 TT = FNMS(KP866025403, TS, TR);
Chris@10 132 T1K = FNMS(KP176326980, T1z, T1A);
Chris@10 133 T1B = FMA(KP176326980, T1A, T1z);
Chris@10 134 T1L = FNMS(KP363970234, T1C, T1D);
Chris@10 135 T1E = FMA(KP363970234, T1D, T1C);
Chris@10 136 }
Chris@10 137 }
Chris@10 138 }
Chris@10 139 {
Chris@10 140 E T1d, T14, T1c, TX;
Chris@10 141 cr[0] = T5 + Tg;
Chris@10 142 T1d = FNMS(KP839099631, T10, T13);
Chris@10 143 T14 = FMA(KP839099631, T13, T10);
Chris@10 144 T1c = FMA(KP176326980, TT, TW);
Chris@10 145 TX = FNMS(KP176326980, TW, TT);
Chris@10 146 ci[0] = Tl + Tw;
Chris@10 147 {
Chris@10 148 E TL, TK, TJ, Ty, TD;
Chris@10 149 Ty = FNMS(KP500000000, Tg, T5);
Chris@10 150 TD = FNMS(KP500000000, Tw, Tl);
Chris@10 151 {
Chris@10 152 E Tx, TC, TA, TI, TF;
Chris@10 153 Tx = W[10];
Chris@10 154 TC = W[11];
Chris@10 155 TA = FNMS(KP866025403, Tz, Ty);
Chris@10 156 TI = FMA(KP866025403, Tz, Ty);
Chris@10 157 TF = FNMS(KP866025403, TE, TD);
Chris@10 158 TL = FMA(KP866025403, TE, TD);
Chris@10 159 {
Chris@10 160 E TH, TB, TG, TM;
Chris@10 161 TH = W[4];
Chris@10 162 TB = Tx * TA;
Chris@10 163 TK = W[5];
Chris@10 164 TG = Tx * TF;
Chris@10 165 TM = TH * TL;
Chris@10 166 TJ = TH * TI;
Chris@10 167 cr[WS(rs, 6)] = FNMS(TC, TF, TB);
Chris@10 168 ci[WS(rs, 6)] = FMA(TC, TA, TG);
Chris@10 169 ci[WS(rs, 3)] = FMA(TK, TI, TM);
Chris@10 170 }
Chris@10 171 }
Chris@10 172 cr[WS(rs, 3)] = FNMS(TK, TL, TJ);
Chris@10 173 {
Chris@10 174 E T1k, T1p, T1l, T1q, T1m;
Chris@10 175 {
Chris@10 176 E T1e, T1j, T15, T1o;
Chris@10 177 T1e = FNMS(KP777861913, T1d, T1c);
Chris@10 178 T1j = FMA(KP777861913, T1d, T1c);
Chris@10 179 T15 = FNMS(KP777861913, T14, TX);
Chris@10 180 T1o = FMA(KP777861913, T14, TX);
Chris@10 181 {
Chris@10 182 E TN, T16, T1f, T17, T1s, T1v, T18, T1i, T1n, T1r, T1u;
Chris@10 183 TN = W[0];
Chris@10 184 T16 = FNMS(KP984807753, T15, TQ);
Chris@10 185 T1i = FMA(KP492403876, T15, TQ);
Chris@10 186 T1f = FMA(KP984807753, T1e, T1b);
Chris@10 187 T1n = FNMS(KP492403876, T1e, T1b);
Chris@10 188 T17 = TN * T16;
Chris@10 189 T1s = FMA(KP852868531, T1j, T1i);
Chris@10 190 T1k = FNMS(KP852868531, T1j, T1i);
Chris@10 191 T1v = FMA(KP852868531, T1o, T1n);
Chris@10 192 T1p = FNMS(KP852868531, T1o, T1n);
Chris@10 193 T18 = W[1];
Chris@10 194 T1r = W[6];
Chris@10 195 T1u = W[7];
Chris@10 196 {
Chris@10 197 E T1h, T1g, T1w, T1t;
Chris@10 198 T1h = W[12];
Chris@10 199 cr[WS(rs, 1)] = FNMS(T18, T1f, T17);
Chris@10 200 T1g = T18 * T16;
Chris@10 201 T1w = T1r * T1v;
Chris@10 202 T1t = T1r * T1s;
Chris@10 203 T1l = T1h * T1k;
Chris@10 204 ci[WS(rs, 1)] = FMA(TN, T1f, T1g);
Chris@10 205 ci[WS(rs, 4)] = FMA(T1u, T1s, T1w);
Chris@10 206 cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t);
Chris@10 207 T1q = T1h * T1p;
Chris@10 208 }
Chris@10 209 T1m = W[13];
Chris@10 210 }
Chris@10 211 }
Chris@10 212 {
Chris@10 213 E T1F, T1W, T1R, T1V, T1N, T1M, T1x, T1I;
Chris@10 214 T1F = FNMS(KP954188894, T1E, T1B);
Chris@10 215 T1W = FMA(KP954188894, T1E, T1B);
Chris@10 216 T1M = FNMS(KP954188894, T1L, T1K);
Chris@10 217 T1R = FMA(KP954188894, T1L, T1K);
Chris@10 218 ci[WS(rs, 7)] = FMA(T1m, T1k, T1q);
Chris@10 219 cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l);
Chris@10 220 T1V = FNMS(KP492403876, T1M, T1J);
Chris@10 221 T1N = FMA(KP984807753, T1M, T1J);
Chris@10 222 T1x = W[2];
Chris@10 223 T1I = W[3];
Chris@10 224 {
Chris@10 225 E T23, T22, T20, T1Z, T24, T21;
Chris@10 226 T1X = FMA(KP852868531, T1W, T1V);
Chris@10 227 T23 = FNMS(KP852868531, T1W, T1V);
Chris@10 228 {
Chris@10 229 E T1G, T1Q, T1O, T1H;
Chris@10 230 T1G = FMA(KP984807753, T1F, T1y);
Chris@10 231 T1Q = FNMS(KP492403876, T1F, T1y);
Chris@10 232 T1O = T1x * T1N;
Chris@10 233 T22 = W[15];
Chris@10 234 T1H = T1x * T1G;
Chris@10 235 T20 = FMA(KP852868531, T1R, T1Q);
Chris@10 236 T1S = FNMS(KP852868531, T1R, T1Q);
Chris@10 237 ci[WS(rs, 2)] = FMA(T1I, T1G, T1O);
Chris@10 238 cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H);
Chris@10 239 T1Z = W[14];
Chris@10 240 T24 = T22 * T20;
Chris@10 241 }
Chris@10 242 T1U = W[9];
Chris@10 243 T21 = T1Z * T20;
Chris@10 244 ci[WS(rs, 8)] = FMA(T1Z, T23, T24);
Chris@10 245 T1P = W[8];
Chris@10 246 T1Y = T1U * T1S;
Chris@10 247 cr[WS(rs, 8)] = FNMS(T22, T23, T21);
Chris@10 248 }
Chris@10 249 }
Chris@10 250 }
Chris@10 251 }
Chris@10 252 }
Chris@10 253 }
Chris@10 254 T1T = T1P * T1S;
Chris@10 255 ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y);
Chris@10 256 cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T);
Chris@10 257 }
Chris@10 258 }
Chris@10 259 }
Chris@10 260
Chris@10 261 static const tw_instr twinstr[] = {
Chris@10 262 {TW_FULL, 1, 9},
Chris@10 263 {TW_NEXT, 1, 0}
Chris@10 264 };
Chris@10 265
Chris@10 266 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} };
Chris@10 267
Chris@10 268 void X(codelet_hb_9) (planner *p) {
Chris@10 269 X(khc2hc_register) (p, hb_9, &desc);
Chris@10 270 }
Chris@10 271 #else /* HAVE_FMA */
Chris@10 272
Chris@10 273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include hb.h */
Chris@10 274
Chris@10 275 /*
Chris@10 276 * This function contains 96 FP additions, 72 FP multiplications,
Chris@10 277 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
Chris@10 278 * 53 stack variables, 8 constants, and 36 memory accesses
Chris@10 279 */
Chris@10 280 #include "hb.h"
Chris@10 281
Chris@10 282 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 283 {
Chris@10 284 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 285 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@10 286 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
Chris@10 287 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@10 288 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@10 289 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@10 290 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 291 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 292 {
Chris@10 293 INT m;
Chris@10 294 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
Chris@10 295 E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u;
Chris@10 296 E T1A, T1r, T1z, T10, T18;
Chris@10 297 {
Chris@10 298 E T1, Th, T4, T14, Tk, TL, TK, T15;
Chris@10 299 T1 = cr[0];
Chris@10 300 Th = ci[WS(rs, 8)];
Chris@10 301 {
Chris@10 302 E T2, T3, Ti, Tj;
Chris@10 303 T2 = cr[WS(rs, 3)];
Chris@10 304 T3 = ci[WS(rs, 2)];
Chris@10 305 T4 = T2 + T3;
Chris@10 306 T14 = KP866025403 * (T2 - T3);
Chris@10 307 Ti = ci[WS(rs, 5)];
Chris@10 308 Tj = cr[WS(rs, 6)];
Chris@10 309 Tk = Ti - Tj;
Chris@10 310 TL = KP866025403 * (Ti + Tj);
Chris@10 311 }
Chris@10 312 T5 = T1 + T4;
Chris@10 313 Tl = Th + Tk;
Chris@10 314 TK = FNMS(KP500000000, T4, T1);
Chris@10 315 TM = TK - TL;
Chris@10 316 T1o = TK + TL;
Chris@10 317 T15 = FNMS(KP500000000, Tk, Th);
Chris@10 318 T16 = T14 + T15;
Chris@10 319 T1y = T15 - T14;
Chris@10 320 }
Chris@10 321 {
Chris@10 322 E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV;
Chris@10 323 E TY;
Chris@10 324 {
Chris@10 325 E T7, T8, Tn, To;
Chris@10 326 T6 = cr[WS(rs, 1)];
Chris@10 327 T7 = cr[WS(rs, 4)];
Chris@10 328 T8 = ci[WS(rs, 1)];
Chris@10 329 T9 = T7 + T8;
Chris@10 330 TN = FNMS(KP500000000, T9, T6);
Chris@10 331 TQ = KP866025403 * (T7 - T8);
Chris@10 332 Tm = ci[WS(rs, 7)];
Chris@10 333 Tn = ci[WS(rs, 4)];
Chris@10 334 To = cr[WS(rs, 7)];
Chris@10 335 Tp = Tn - To;
Chris@10 336 TO = KP866025403 * (Tn + To);
Chris@10 337 TR = FNMS(KP500000000, Tp, Tm);
Chris@10 338 }
Chris@10 339 {
Chris@10 340 E Tc, Td, Ts, Tt;
Chris@10 341 Tb = cr[WS(rs, 2)];
Chris@10 342 Tc = ci[WS(rs, 3)];
Chris@10 343 Td = ci[0];
Chris@10 344 Te = Tc + Td;
Chris@10 345 TU = FNMS(KP500000000, Te, Tb);
Chris@10 346 TX = KP866025403 * (Tc - Td);
Chris@10 347 Tr = ci[WS(rs, 6)];
Chris@10 348 Ts = cr[WS(rs, 5)];
Chris@10 349 Tt = cr[WS(rs, 8)];
Chris@10 350 Tu = Ts + Tt;
Chris@10 351 TV = KP866025403 * (Ts - Tt);
Chris@10 352 TY = FMA(KP500000000, Tu, Tr);
Chris@10 353 }
Chris@10 354 {
Chris@10 355 E TP, TS, T1s, T1t;
Chris@10 356 Ta = T6 + T9;
Chris@10 357 Tf = Tb + Te;
Chris@10 358 Tg = Ta + Tf;
Chris@10 359 Tq = Tm + Tp;
Chris@10 360 Tv = Tr - Tu;
Chris@10 361 Tw = Tq + Tv;
Chris@10 362 TP = TN - TO;
Chris@10 363 TS = TQ + TR;
Chris@10 364 TT = FNMS(KP642787609, TS, KP766044443 * TP);
Chris@10 365 T17 = FMA(KP766044443, TS, KP642787609 * TP);
Chris@10 366 T1s = TU - TV;
Chris@10 367 T1t = TY - TX;
Chris@10 368 T1u = FMA(KP939692620, T1s, KP342020143 * T1t);
Chris@10 369 T1A = FNMS(KP939692620, T1t, KP342020143 * T1s);
Chris@10 370 {
Chris@10 371 E T1p, T1q, TW, TZ;
Chris@10 372 T1p = TN + TO;
Chris@10 373 T1q = TR - TQ;
Chris@10 374 T1r = FNMS(KP984807753, T1q, KP173648177 * T1p);
Chris@10 375 T1z = FMA(KP173648177, T1q, KP984807753 * T1p);
Chris@10 376 TW = TU + TV;
Chris@10 377 TZ = TX + TY;
Chris@10 378 T10 = FNMS(KP984807753, TZ, KP173648177 * TW);
Chris@10 379 T18 = FMA(KP984807753, TW, KP173648177 * TZ);
Chris@10 380 }
Chris@10 381 }
Chris@10 382 }
Chris@10 383 cr[0] = T5 + Tg;
Chris@10 384 ci[0] = Tl + Tw;
Chris@10 385 {
Chris@10 386 E TA, TG, TE, TI;
Chris@10 387 {
Chris@10 388 E Ty, Tz, TC, TD;
Chris@10 389 Ty = FNMS(KP500000000, Tg, T5);
Chris@10 390 Tz = KP866025403 * (Tv - Tq);
Chris@10 391 TA = Ty - Tz;
Chris@10 392 TG = Ty + Tz;
Chris@10 393 TC = FNMS(KP500000000, Tw, Tl);
Chris@10 394 TD = KP866025403 * (Ta - Tf);
Chris@10 395 TE = TC - TD;
Chris@10 396 TI = TD + TC;
Chris@10 397 }
Chris@10 398 {
Chris@10 399 E Tx, TB, TF, TH;
Chris@10 400 Tx = W[10];
Chris@10 401 TB = W[11];
Chris@10 402 cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
Chris@10 403 ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
Chris@10 404 TF = W[4];
Chris@10 405 TH = W[5];
Chris@10 406 cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG);
Chris@10 407 ci[WS(rs, 3)] = FMA(TF, TI, TH * TG);
Chris@10 408 }
Chris@10 409 }
Chris@10 410 {
Chris@10 411 E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13;
Chris@10 412 T1d = KP866025403 * (T18 - T17);
Chris@10 413 T1h = KP866025403 * (TT - T10);
Chris@10 414 T11 = TT + T10;
Chris@10 415 T12 = TM + T11;
Chris@10 416 T1c = FNMS(KP500000000, T11, TM);
Chris@10 417 T19 = T17 + T18;
Chris@10 418 T1a = T16 + T19;
Chris@10 419 T1g = FNMS(KP500000000, T19, T16);
Chris@10 420 TJ = W[0];
Chris@10 421 T13 = W[1];
Chris@10 422 cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12);
Chris@10 423 ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a);
Chris@10 424 {
Chris@10 425 E T1k, T1m, T1j, T1l;
Chris@10 426 T1k = T1c + T1d;
Chris@10 427 T1m = T1h + T1g;
Chris@10 428 T1j = W[6];
Chris@10 429 T1l = W[7];
Chris@10 430 cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k);
Chris@10 431 ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k);
Chris@10 432 }
Chris@10 433 {
Chris@10 434 E T1e, T1i, T1b, T1f;
Chris@10 435 T1e = T1c - T1d;
Chris@10 436 T1i = T1g - T1h;
Chris@10 437 T1b = W[12];
Chris@10 438 T1f = W[13];
Chris@10 439 cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e);
Chris@10 440 ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e);
Chris@10 441 }
Chris@10 442 }
Chris@10 443 {
Chris@10 444 E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x;
Chris@10 445 T1F = KP866025403 * (T1A - T1z);
Chris@10 446 T1J = KP866025403 * (T1r + T1u);
Chris@10 447 T1v = T1r - T1u;
Chris@10 448 T1w = T1o + T1v;
Chris@10 449 T1E = FNMS(KP500000000, T1v, T1o);
Chris@10 450 T1B = T1z + T1A;
Chris@10 451 T1C = T1y + T1B;
Chris@10 452 T1I = FNMS(KP500000000, T1B, T1y);
Chris@10 453 T1n = W[2];
Chris@10 454 T1x = W[3];
Chris@10 455 cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w);
Chris@10 456 ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w);
Chris@10 457 {
Chris@10 458 E T1M, T1O, T1L, T1N;
Chris@10 459 T1M = T1F + T1E;
Chris@10 460 T1O = T1I + T1J;
Chris@10 461 T1L = W[8];
Chris@10 462 T1N = W[9];
Chris@10 463 cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M);
Chris@10 464 ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O);
Chris@10 465 }
Chris@10 466 {
Chris@10 467 E T1G, T1K, T1D, T1H;
Chris@10 468 T1G = T1E - T1F;
Chris@10 469 T1K = T1I - T1J;
Chris@10 470 T1D = W[14];
Chris@10 471 T1H = W[15];
Chris@10 472 cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G);
Chris@10 473 ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K);
Chris@10 474 }
Chris@10 475 }
Chris@10 476 }
Chris@10 477 }
Chris@10 478 }
Chris@10 479
Chris@10 480 static const tw_instr twinstr[] = {
Chris@10 481 {TW_FULL, 1, 9},
Chris@10 482 {TW_NEXT, 1, 0}
Chris@10 483 };
Chris@10 484
Chris@10 485 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} };
Chris@10 486
Chris@10 487 void X(codelet_hb_9) (planner *p) {
Chris@10 488 X(khc2hc_register) (p, hb_9, &desc);
Chris@10 489 }
Chris@10 490 #endif /* HAVE_FMA */