annotate src/fftw-3.3.3/rdft/scalar/r2cb/hb_5.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:12 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include hb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@10 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@10 33 * 42 stack variables, 4 constants, and 20 memory accesses
Chris@10 34 */
Chris@10 35 #include "hb.h"
Chris@10 36
Chris@10 37 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@10 46 E TQ, TP, TT, TR, TS, TU;
Chris@10 47 {
Chris@10 48 E T1, Tn, TM, Tw, Tb, T8, To, Tf, Ta, Tg, Th;
Chris@10 49 {
Chris@10 50 E T2, T3, T5, T6, T4, Tu;
Chris@10 51 T1 = cr[0];
Chris@10 52 T2 = cr[WS(rs, 1)];
Chris@10 53 T3 = ci[0];
Chris@10 54 T5 = cr[WS(rs, 2)];
Chris@10 55 T6 = ci[WS(rs, 1)];
Chris@10 56 Tn = ci[WS(rs, 4)];
Chris@10 57 T4 = T2 + T3;
Chris@10 58 Tu = T2 - T3;
Chris@10 59 {
Chris@10 60 E T7, Tv, Td, Te;
Chris@10 61 T7 = T5 + T6;
Chris@10 62 Tv = T5 - T6;
Chris@10 63 Td = ci[WS(rs, 3)];
Chris@10 64 Te = cr[WS(rs, 4)];
Chris@10 65 TM = FNMS(KP618033988, Tu, Tv);
Chris@10 66 Tw = FMA(KP618033988, Tv, Tu);
Chris@10 67 Tb = T4 - T7;
Chris@10 68 T8 = T4 + T7;
Chris@10 69 To = Td - Te;
Chris@10 70 Tf = Td + Te;
Chris@10 71 Ta = FNMS(KP250000000, T8, T1);
Chris@10 72 Tg = ci[WS(rs, 2)];
Chris@10 73 Th = cr[WS(rs, 3)];
Chris@10 74 }
Chris@10 75 }
Chris@10 76 cr[0] = T1 + T8;
Chris@10 77 {
Chris@10 78 E TG, T9, Tm, Tz, TH, TC, TA, Tk, Tt, TL, Tc, Ti, Tp, TI;
Chris@10 79 TG = FNMS(KP559016994, Tb, Ta);
Chris@10 80 Tc = FMA(KP559016994, Tb, Ta);
Chris@10 81 T9 = W[0];
Chris@10 82 Ti = Tg + Th;
Chris@10 83 Tp = Tg - Th;
Chris@10 84 Tm = W[1];
Chris@10 85 {
Chris@10 86 E Ts, Tj, Tr, Tq;
Chris@10 87 Tz = W[6];
Chris@10 88 Ts = To - Tp;
Chris@10 89 Tq = To + Tp;
Chris@10 90 Tj = FMA(KP618033988, Ti, Tf);
Chris@10 91 TH = FNMS(KP618033988, Tf, Ti);
Chris@10 92 ci[0] = Tn + Tq;
Chris@10 93 Tr = FNMS(KP250000000, Tq, Tn);
Chris@10 94 TC = W[7];
Chris@10 95 TA = FMA(KP951056516, Tj, Tc);
Chris@10 96 Tk = FNMS(KP951056516, Tj, Tc);
Chris@10 97 Tt = FMA(KP559016994, Ts, Tr);
Chris@10 98 TL = FNMS(KP559016994, Ts, Tr);
Chris@10 99 }
Chris@10 100 {
Chris@10 101 E TE, TB, Ty, Tl, TD, Tx;
Chris@10 102 TE = TC * TA;
Chris@10 103 TB = Tz * TA;
Chris@10 104 Ty = Tm * Tk;
Chris@10 105 Tl = T9 * Tk;
Chris@10 106 TD = FNMS(KP951056516, Tw, Tt);
Chris@10 107 Tx = FMA(KP951056516, Tw, Tt);
Chris@10 108 TI = FMA(KP951056516, TH, TG);
Chris@10 109 TQ = FNMS(KP951056516, TH, TG);
Chris@10 110 ci[WS(rs, 4)] = FMA(Tz, TD, TE);
Chris@10 111 cr[WS(rs, 4)] = FNMS(TC, TD, TB);
Chris@10 112 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
Chris@10 113 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
Chris@10 114 }
Chris@10 115 {
Chris@10 116 E TF, TK, TN, TJ, TO;
Chris@10 117 TF = W[2];
Chris@10 118 TK = W[3];
Chris@10 119 TP = W[4];
Chris@10 120 TT = FMA(KP951056516, TM, TL);
Chris@10 121 TN = FNMS(KP951056516, TM, TL);
Chris@10 122 TJ = TF * TI;
Chris@10 123 TO = TK * TI;
Chris@10 124 TR = TP * TQ;
Chris@10 125 TS = W[5];
Chris@10 126 cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
Chris@10 127 ci[WS(rs, 2)] = FMA(TF, TN, TO);
Chris@10 128 }
Chris@10 129 }
Chris@10 130 }
Chris@10 131 cr[WS(rs, 3)] = FNMS(TS, TT, TR);
Chris@10 132 TU = TS * TQ;
Chris@10 133 ci[WS(rs, 3)] = FMA(TP, TT, TU);
Chris@10 134 }
Chris@10 135 }
Chris@10 136 }
Chris@10 137
Chris@10 138 static const tw_instr twinstr[] = {
Chris@10 139 {TW_FULL, 1, 5},
Chris@10 140 {TW_NEXT, 1, 0}
Chris@10 141 };
Chris@10 142
Chris@10 143 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {14, 8, 26, 0} };
Chris@10 144
Chris@10 145 void X(codelet_hb_5) (planner *p) {
Chris@10 146 X(khc2hc_register) (p, hb_5, &desc);
Chris@10 147 }
Chris@10 148 #else /* HAVE_FMA */
Chris@10 149
Chris@10 150 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include hb.h */
Chris@10 151
Chris@10 152 /*
Chris@10 153 * This function contains 40 FP additions, 28 FP multiplications,
Chris@10 154 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@10 155 * 27 stack variables, 4 constants, and 20 memory accesses
Chris@10 156 */
Chris@10 157 #include "hb.h"
Chris@10 158
Chris@10 159 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 160 {
Chris@10 161 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 162 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 163 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 164 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 165 {
Chris@10 166 INT m;
Chris@10 167 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@10 168 E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
Chris@10 169 {
Chris@10 170 E T4, Tq, T7, Tr;
Chris@10 171 T1 = cr[0];
Chris@10 172 {
Chris@10 173 E T2, T3, T5, T6;
Chris@10 174 T2 = cr[WS(rs, 1)];
Chris@10 175 T3 = ci[0];
Chris@10 176 T4 = T2 + T3;
Chris@10 177 Tq = T2 - T3;
Chris@10 178 T5 = cr[WS(rs, 2)];
Chris@10 179 T6 = ci[WS(rs, 1)];
Chris@10 180 T7 = T5 + T6;
Chris@10 181 Tr = T5 - T6;
Chris@10 182 }
Chris@10 183 Tj = KP559016994 * (T4 - T7);
Chris@10 184 TG = FMA(KP951056516, Tq, KP587785252 * Tr);
Chris@10 185 Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
Chris@10 186 T8 = T4 + T7;
Chris@10 187 Ti = FNMS(KP250000000, T8, T1);
Chris@10 188 }
Chris@10 189 {
Chris@10 190 E Tc, Tl, Tf, Tm;
Chris@10 191 T9 = ci[WS(rs, 4)];
Chris@10 192 {
Chris@10 193 E Ta, Tb, Td, Te;
Chris@10 194 Ta = ci[WS(rs, 3)];
Chris@10 195 Tb = cr[WS(rs, 4)];
Chris@10 196 Tc = Ta - Tb;
Chris@10 197 Tl = Ta + Tb;
Chris@10 198 Td = ci[WS(rs, 2)];
Chris@10 199 Te = cr[WS(rs, 3)];
Chris@10 200 Tf = Td - Te;
Chris@10 201 Tm = Td + Te;
Chris@10 202 }
Chris@10 203 Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
Chris@10 204 TD = FMA(KP951056516, Tl, KP587785252 * Tm);
Chris@10 205 Tu = KP559016994 * (Tc - Tf);
Chris@10 206 Tg = Tc + Tf;
Chris@10 207 Tt = FNMS(KP250000000, Tg, T9);
Chris@10 208 }
Chris@10 209 cr[0] = T1 + T8;
Chris@10 210 ci[0] = T9 + Tg;
Chris@10 211 {
Chris@10 212 E To, Ty, Tw, TA, Tk, Tv;
Chris@10 213 Tk = Ti - Tj;
Chris@10 214 To = Tk - Tn;
Chris@10 215 Ty = Tk + Tn;
Chris@10 216 Tv = Tt - Tu;
Chris@10 217 Tw = Ts + Tv;
Chris@10 218 TA = Tv - Ts;
Chris@10 219 {
Chris@10 220 E Th, Tp, Tx, Tz;
Chris@10 221 Th = W[2];
Chris@10 222 Tp = W[3];
Chris@10 223 cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
Chris@10 224 ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
Chris@10 225 Tx = W[4];
Chris@10 226 Tz = W[5];
Chris@10 227 cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
Chris@10 228 ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
Chris@10 229 }
Chris@10 230 }
Chris@10 231 {
Chris@10 232 E TE, TK, TI, TM, TC, TH;
Chris@10 233 TC = Tj + Ti;
Chris@10 234 TE = TC - TD;
Chris@10 235 TK = TC + TD;
Chris@10 236 TH = Tu + Tt;
Chris@10 237 TI = TG + TH;
Chris@10 238 TM = TH - TG;
Chris@10 239 {
Chris@10 240 E TB, TF, TJ, TL;
Chris@10 241 TB = W[0];
Chris@10 242 TF = W[1];
Chris@10 243 cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
Chris@10 244 ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
Chris@10 245 TJ = W[6];
Chris@10 246 TL = W[7];
Chris@10 247 cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
Chris@10 248 ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
Chris@10 249 }
Chris@10 250 }
Chris@10 251 }
Chris@10 252 }
Chris@10 253 }
Chris@10 254
Chris@10 255 static const tw_instr twinstr[] = {
Chris@10 256 {TW_FULL, 1, 5},
Chris@10 257 {TW_NEXT, 1, 0}
Chris@10 258 };
Chris@10 259
Chris@10 260 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {26, 14, 14, 0} };
Chris@10 261
Chris@10 262 void X(codelet_hb_5) (planner *p) {
Chris@10 263 X(khc2hc_register) (p, hb_5, &desc);
Chris@10 264 }
Chris@10 265 #endif /* HAVE_FMA */