annotate src/fftw-3.3.3/rdft/scalar/r2cb/hb_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:41:13 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include hb.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 102 FP additions, 72 FP multiplications,
Chris@10 32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add),
Chris@10 33 * 71 stack variables, 4 constants, and 40 memory accesses
Chris@10 34 */
Chris@10 35 #include "hb.h"
Chris@10 36
Chris@10 37 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
Chris@10 46 E T21, T1Y, T1X;
Chris@10 47 {
Chris@10 48 E T1B, TH, T1g, T3, T1V, T1x, T1G, T1E, TM, TK, T11, TB, T7, T1m, T1J;
Chris@10 49 E TO, Th, T1h, T6, T8, TF, TG, T1i, T9;
Chris@10 50 TF = ci[WS(rs, 9)];
Chris@10 51 TG = cr[WS(rs, 5)];
Chris@10 52 {
Chris@10 53 E T1u, Tp, Tu, T1s, Tz, T1v, Ts, Tv;
Chris@10 54 {
Chris@10 55 E Tx, Ty, Tn, To, Tq, Tr;
Chris@10 56 Tn = ci[WS(rs, 5)];
Chris@10 57 To = cr[WS(rs, 9)];
Chris@10 58 Tx = ci[WS(rs, 6)];
Chris@10 59 T1B = TF + TG;
Chris@10 60 TH = TF - TG;
Chris@10 61 T1u = Tn + To;
Chris@10 62 Tp = Tn - To;
Chris@10 63 Ty = cr[WS(rs, 8)];
Chris@10 64 Tq = ci[WS(rs, 8)];
Chris@10 65 Tr = cr[WS(rs, 6)];
Chris@10 66 Tu = ci[WS(rs, 7)];
Chris@10 67 T1s = Tx + Ty;
Chris@10 68 Tz = Tx - Ty;
Chris@10 69 T1v = Tq + Tr;
Chris@10 70 Ts = Tq - Tr;
Chris@10 71 Tv = cr[WS(rs, 7)];
Chris@10 72 }
Chris@10 73 {
Chris@10 74 E T1, T1w, T1D, TJ, Tt, T1r, Tw, T2;
Chris@10 75 T1 = cr[0];
Chris@10 76 T1w = T1u + T1v;
Chris@10 77 T1D = T1u - T1v;
Chris@10 78 TJ = Tp + Ts;
Chris@10 79 Tt = Tp - Ts;
Chris@10 80 T1r = Tu + Tv;
Chris@10 81 Tw = Tu - Tv;
Chris@10 82 T2 = ci[WS(rs, 4)];
Chris@10 83 {
Chris@10 84 E Tb, Tc, Te, Tf;
Chris@10 85 Tb = cr[WS(rs, 4)];
Chris@10 86 {
Chris@10 87 E T1t, T1C, TI, TA;
Chris@10 88 T1t = T1r + T1s;
Chris@10 89 T1C = T1r - T1s;
Chris@10 90 TI = Tw + Tz;
Chris@10 91 TA = Tw - Tz;
Chris@10 92 T1g = T1 - T2;
Chris@10 93 T3 = T1 + T2;
Chris@10 94 T1V = FNMS(KP618033988, T1t, T1w);
Chris@10 95 T1x = FMA(KP618033988, T1w, T1t);
Chris@10 96 T1G = T1C - T1D;
Chris@10 97 T1E = T1C + T1D;
Chris@10 98 TM = TI - TJ;
Chris@10 99 TK = TI + TJ;
Chris@10 100 T11 = FMA(KP618033988, Tt, TA);
Chris@10 101 TB = FNMS(KP618033988, TA, Tt);
Chris@10 102 Tc = ci[0];
Chris@10 103 }
Chris@10 104 Te = ci[WS(rs, 3)];
Chris@10 105 Tf = cr[WS(rs, 1)];
Chris@10 106 {
Chris@10 107 E T4, T1k, Td, T1l, Tg, T5;
Chris@10 108 T4 = cr[WS(rs, 2)];
Chris@10 109 T1k = Tb - Tc;
Chris@10 110 Td = Tb + Tc;
Chris@10 111 T1l = Te - Tf;
Chris@10 112 Tg = Te + Tf;
Chris@10 113 T5 = ci[WS(rs, 2)];
Chris@10 114 T7 = ci[WS(rs, 1)];
Chris@10 115 T1m = T1k + T1l;
Chris@10 116 T1J = T1k - T1l;
Chris@10 117 TO = Td - Tg;
Chris@10 118 Th = Td + Tg;
Chris@10 119 T1h = T4 - T5;
Chris@10 120 T6 = T4 + T5;
Chris@10 121 T8 = cr[WS(rs, 3)];
Chris@10 122 }
Chris@10 123 }
Chris@10 124 }
Chris@10 125 }
Chris@10 126 ci[0] = TH + TK;
Chris@10 127 T1i = T7 - T8;
Chris@10 128 T9 = T7 + T8;
Chris@10 129 {
Chris@10 130 E T2d, T1F, T29, T1I, TP, T2c, T1p, Tl, T1o, Tk, T2b, T2e, T17, T14, T13;
Chris@10 131 T2d = T1B + T1E;
Chris@10 132 T1F = FNMS(KP250000000, T1E, T1B);
Chris@10 133 {
Chris@10 134 E T1j, Ta, T1n, Ti, T2a;
Chris@10 135 T29 = W[8];
Chris@10 136 T1I = T1h - T1i;
Chris@10 137 T1j = T1h + T1i;
Chris@10 138 TP = T6 - T9;
Chris@10 139 Ta = T6 + T9;
Chris@10 140 T2c = W[9];
Chris@10 141 T1p = T1j - T1m;
Chris@10 142 T1n = T1j + T1m;
Chris@10 143 Tl = Ta - Th;
Chris@10 144 Ti = Ta + Th;
Chris@10 145 T1o = FNMS(KP250000000, T1n, T1g);
Chris@10 146 T2a = T1g + T1n;
Chris@10 147 cr[0] = T3 + Ti;
Chris@10 148 Tk = FNMS(KP250000000, Ti, T3);
Chris@10 149 T2b = T29 * T2a;
Chris@10 150 T2e = T2c * T2a;
Chris@10 151 }
Chris@10 152 {
Chris@10 153 E T16, TQ, T10, Tm, TL;
Chris@10 154 T16 = FMA(KP618033988, TO, TP);
Chris@10 155 TQ = FNMS(KP618033988, TP, TO);
Chris@10 156 cr[WS(rs, 5)] = FNMS(T2c, T2d, T2b);
Chris@10 157 ci[WS(rs, 5)] = FMA(T29, T2d, T2e);
Chris@10 158 T10 = FMA(KP559016994, Tl, Tk);
Chris@10 159 Tm = FNMS(KP559016994, Tl, Tk);
Chris@10 160 TL = FNMS(KP250000000, TK, TH);
Chris@10 161 {
Chris@10 162 E TE, TU, T12, TR, TX, T1d, T1c, T19, TD, T1e, T1b, TW, TT;
Chris@10 163 {
Chris@10 164 E TC, T15, T1a, TS, Tj, TN;
Chris@10 165 TE = W[3];
Chris@10 166 TC = FMA(KP951056516, TB, Tm);
Chris@10 167 TU = FNMS(KP951056516, TB, Tm);
Chris@10 168 TN = FNMS(KP559016994, TM, TL);
Chris@10 169 T15 = FMA(KP559016994, TM, TL);
Chris@10 170 T12 = FMA(KP951056516, T11, T10);
Chris@10 171 T1a = FNMS(KP951056516, T11, T10);
Chris@10 172 TS = TE * TC;
Chris@10 173 TR = FNMS(KP951056516, TQ, TN);
Chris@10 174 TX = FMA(KP951056516, TQ, TN);
Chris@10 175 Tj = W[2];
Chris@10 176 T1d = FMA(KP951056516, T16, T15);
Chris@10 177 T17 = FNMS(KP951056516, T16, T15);
Chris@10 178 T1c = W[11];
Chris@10 179 T19 = W[10];
Chris@10 180 ci[WS(rs, 2)] = FMA(Tj, TR, TS);
Chris@10 181 TD = Tj * TC;
Chris@10 182 T1e = T1c * T1a;
Chris@10 183 T1b = T19 * T1a;
Chris@10 184 }
Chris@10 185 cr[WS(rs, 2)] = FNMS(TE, TR, TD);
Chris@10 186 ci[WS(rs, 6)] = FMA(T19, T1d, T1e);
Chris@10 187 cr[WS(rs, 6)] = FNMS(T1c, T1d, T1b);
Chris@10 188 TW = W[15];
Chris@10 189 TT = W[14];
Chris@10 190 {
Chris@10 191 E TZ, T18, TY, TV;
Chris@10 192 T14 = W[7];
Chris@10 193 TY = TW * TU;
Chris@10 194 TV = TT * TU;
Chris@10 195 TZ = W[6];
Chris@10 196 T18 = T14 * T12;
Chris@10 197 ci[WS(rs, 8)] = FMA(TT, TX, TY);
Chris@10 198 cr[WS(rs, 8)] = FNMS(TW, TX, TV);
Chris@10 199 T13 = TZ * T12;
Chris@10 200 ci[WS(rs, 4)] = FMA(TZ, T17, T18);
Chris@10 201 }
Chris@10 202 }
Chris@10 203 }
Chris@10 204 {
Chris@10 205 E T20, T1K, T1q, T1U;
Chris@10 206 T20 = FNMS(KP618033988, T1I, T1J);
Chris@10 207 T1K = FMA(KP618033988, T1J, T1I);
Chris@10 208 cr[WS(rs, 4)] = FNMS(T14, T17, T13);
Chris@10 209 T1q = FMA(KP559016994, T1p, T1o);
Chris@10 210 T1U = FNMS(KP559016994, T1p, T1o);
Chris@10 211 {
Chris@10 212 E T1A, T1O, T1W, T1R, T1L, T27, T26, T23, T1z, T28, T25, T1Q, T1N;
Chris@10 213 {
Chris@10 214 E T1y, T1Z, T24, T1M, T1f, T1H;
Chris@10 215 T1A = W[1];
Chris@10 216 T1O = FMA(KP951056516, T1x, T1q);
Chris@10 217 T1y = FNMS(KP951056516, T1x, T1q);
Chris@10 218 T1Z = FNMS(KP559016994, T1G, T1F);
Chris@10 219 T1H = FMA(KP559016994, T1G, T1F);
Chris@10 220 T24 = FMA(KP951056516, T1V, T1U);
Chris@10 221 T1W = FNMS(KP951056516, T1V, T1U);
Chris@10 222 T1M = T1A * T1y;
Chris@10 223 T1R = FNMS(KP951056516, T1K, T1H);
Chris@10 224 T1L = FMA(KP951056516, T1K, T1H);
Chris@10 225 T1f = W[0];
Chris@10 226 T21 = FMA(KP951056516, T20, T1Z);
Chris@10 227 T27 = FNMS(KP951056516, T20, T1Z);
Chris@10 228 T26 = W[13];
Chris@10 229 T23 = W[12];
Chris@10 230 ci[WS(rs, 1)] = FMA(T1f, T1L, T1M);
Chris@10 231 T1z = T1f * T1y;
Chris@10 232 T28 = T26 * T24;
Chris@10 233 T25 = T23 * T24;
Chris@10 234 }
Chris@10 235 cr[WS(rs, 1)] = FNMS(T1A, T1L, T1z);
Chris@10 236 ci[WS(rs, 7)] = FMA(T23, T27, T28);
Chris@10 237 cr[WS(rs, 7)] = FNMS(T26, T27, T25);
Chris@10 238 T1Q = W[17];
Chris@10 239 T1N = W[16];
Chris@10 240 {
Chris@10 241 E T1T, T22, T1S, T1P;
Chris@10 242 T1Y = W[5];
Chris@10 243 T1S = T1Q * T1O;
Chris@10 244 T1P = T1N * T1O;
Chris@10 245 T1T = W[4];
Chris@10 246 T22 = T1Y * T1W;
Chris@10 247 ci[WS(rs, 9)] = FMA(T1N, T1R, T1S);
Chris@10 248 cr[WS(rs, 9)] = FNMS(T1Q, T1R, T1P);
Chris@10 249 T1X = T1T * T1W;
Chris@10 250 ci[WS(rs, 3)] = FMA(T1T, T21, T22);
Chris@10 251 }
Chris@10 252 }
Chris@10 253 }
Chris@10 254 }
Chris@10 255 }
Chris@10 256 cr[WS(rs, 3)] = FNMS(T1Y, T21, T1X);
Chris@10 257 }
Chris@10 258 }
Chris@10 259 }
Chris@10 260
Chris@10 261 static const tw_instr twinstr[] = {
Chris@10 262 {TW_FULL, 1, 10},
Chris@10 263 {TW_NEXT, 1, 0}
Chris@10 264 };
Chris@10 265
Chris@10 266 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {48, 18, 54, 0} };
Chris@10 267
Chris@10 268 void X(codelet_hb_10) (planner *p) {
Chris@10 269 X(khc2hc_register) (p, hb_10, &desc);
Chris@10 270 }
Chris@10 271 #else /* HAVE_FMA */
Chris@10 272
Chris@10 273 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include hb.h */
Chris@10 274
Chris@10 275 /*
Chris@10 276 * This function contains 102 FP additions, 60 FP multiplications,
Chris@10 277 * (or, 72 additions, 30 multiplications, 30 fused multiply/add),
Chris@10 278 * 41 stack variables, 4 constants, and 40 memory accesses
Chris@10 279 */
Chris@10 280 #include "hb.h"
Chris@10 281
Chris@10 282 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 283 {
Chris@10 284 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 285 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 286 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 287 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 288 {
Chris@10 289 INT m;
Chris@10 290 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
Chris@10 291 E T3, T18, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, TJ, T1i, Tt, TA, T1w;
Chris@10 292 E T1v, T1p, T1E, TM, TO;
Chris@10 293 {
Chris@10 294 E T1, T2, TH, TI;
Chris@10 295 T1 = cr[0];
Chris@10 296 T2 = ci[WS(rs, 4)];
Chris@10 297 T3 = T1 + T2;
Chris@10 298 T18 = T1 - T2;
Chris@10 299 {
Chris@10 300 E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
Chris@10 301 {
Chris@10 302 E T4, T5, Te, Tf;
Chris@10 303 T4 = cr[WS(rs, 2)];
Chris@10 304 T5 = ci[WS(rs, 2)];
Chris@10 305 T6 = T4 + T5;
Chris@10 306 T19 = T4 - T5;
Chris@10 307 Te = ci[WS(rs, 3)];
Chris@10 308 Tf = cr[WS(rs, 1)];
Chris@10 309 Tg = Te + Tf;
Chris@10 310 T1d = Te - Tf;
Chris@10 311 }
Chris@10 312 {
Chris@10 313 E T7, T8, Tb, Tc;
Chris@10 314 T7 = ci[WS(rs, 1)];
Chris@10 315 T8 = cr[WS(rs, 3)];
Chris@10 316 T9 = T7 + T8;
Chris@10 317 T1a = T7 - T8;
Chris@10 318 Tb = cr[WS(rs, 4)];
Chris@10 319 Tc = ci[0];
Chris@10 320 Td = Tb + Tc;
Chris@10 321 T1c = Tb - Tc;
Chris@10 322 }
Chris@10 323 TE = T6 - T9;
Chris@10 324 TF = Td - Tg;
Chris@10 325 T1B = T1c - T1d;
Chris@10 326 T1A = T19 - T1a;
Chris@10 327 {
Chris@10 328 E T1b, T1e, Ta, Th;
Chris@10 329 T1b = T19 + T1a;
Chris@10 330 T1e = T1c + T1d;
Chris@10 331 T1f = T1b + T1e;
Chris@10 332 T1t = KP559016994 * (T1b - T1e);
Chris@10 333 Ta = T6 + T9;
Chris@10 334 Th = Td + Tg;
Chris@10 335 Ti = Ta + Th;
Chris@10 336 Tl = KP559016994 * (Ta - Th);
Chris@10 337 }
Chris@10 338 }
Chris@10 339 TH = ci[WS(rs, 9)];
Chris@10 340 TI = cr[WS(rs, 5)];
Chris@10 341 TJ = TH - TI;
Chris@10 342 T1i = TH + TI;
Chris@10 343 {
Chris@10 344 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
Chris@10 345 {
Chris@10 346 E Tn, To, Tx, Ty;
Chris@10 347 Tn = ci[WS(rs, 7)];
Chris@10 348 To = cr[WS(rs, 7)];
Chris@10 349 Tp = Tn - To;
Chris@10 350 T1j = Tn + To;
Chris@10 351 Tx = ci[WS(rs, 8)];
Chris@10 352 Ty = cr[WS(rs, 6)];
Chris@10 353 Tz = Tx - Ty;
Chris@10 354 T1n = Tx + Ty;
Chris@10 355 }
Chris@10 356 {
Chris@10 357 E Tq, Tr, Tu, Tv;
Chris@10 358 Tq = ci[WS(rs, 6)];
Chris@10 359 Tr = cr[WS(rs, 8)];
Chris@10 360 Ts = Tq - Tr;
Chris@10 361 T1k = Tq + Tr;
Chris@10 362 Tu = ci[WS(rs, 5)];
Chris@10 363 Tv = cr[WS(rs, 9)];
Chris@10 364 Tw = Tu - Tv;
Chris@10 365 T1m = Tu + Tv;
Chris@10 366 }
Chris@10 367 Tt = Tp - Ts;
Chris@10 368 TA = Tw - Tz;
Chris@10 369 T1w = T1m + T1n;
Chris@10 370 T1v = T1j + T1k;
Chris@10 371 {
Chris@10 372 E T1l, T1o, TK, TL;
Chris@10 373 T1l = T1j - T1k;
Chris@10 374 T1o = T1m - T1n;
Chris@10 375 T1p = T1l + T1o;
Chris@10 376 T1E = KP559016994 * (T1l - T1o);
Chris@10 377 TK = Tp + Ts;
Chris@10 378 TL = Tw + Tz;
Chris@10 379 TM = TK + TL;
Chris@10 380 TO = KP559016994 * (TK - TL);
Chris@10 381 }
Chris@10 382 }
Chris@10 383 }
Chris@10 384 cr[0] = T3 + Ti;
Chris@10 385 ci[0] = TJ + TM;
Chris@10 386 {
Chris@10 387 E T1g, T1q, T17, T1h;
Chris@10 388 T1g = T18 + T1f;
Chris@10 389 T1q = T1i + T1p;
Chris@10 390 T17 = W[8];
Chris@10 391 T1h = W[9];
Chris@10 392 cr[WS(rs, 5)] = FNMS(T1h, T1q, T17 * T1g);
Chris@10 393 ci[WS(rs, 5)] = FMA(T1h, T1g, T17 * T1q);
Chris@10 394 }
Chris@10 395 {
Chris@10 396 E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
Chris@10 397 TB = FNMS(KP951056516, TA, KP587785252 * Tt);
Chris@10 398 TG = FNMS(KP951056516, TF, KP587785252 * TE);
Chris@10 399 T11 = FMA(KP951056516, TE, KP587785252 * TF);
Chris@10 400 TX = FMA(KP951056516, Tt, KP587785252 * TA);
Chris@10 401 TN = FNMS(KP250000000, TM, TJ);
Chris@10 402 TP = TN - TO;
Chris@10 403 T10 = TO + TN;
Chris@10 404 Tk = FNMS(KP250000000, Ti, T3);
Chris@10 405 Tm = Tk - Tl;
Chris@10 406 TW = Tl + Tk;
Chris@10 407 {
Chris@10 408 E TC, TQ, Tj, TD;
Chris@10 409 TC = Tm - TB;
Chris@10 410 TQ = TG + TP;
Chris@10 411 Tj = W[2];
Chris@10 412 TD = W[3];
Chris@10 413 cr[WS(rs, 2)] = FNMS(TD, TQ, Tj * TC);
Chris@10 414 ci[WS(rs, 2)] = FMA(TD, TC, Tj * TQ);
Chris@10 415 }
Chris@10 416 {
Chris@10 417 E T14, T16, T13, T15;
Chris@10 418 T14 = TW - TX;
Chris@10 419 T16 = T11 + T10;
Chris@10 420 T13 = W[10];
Chris@10 421 T15 = W[11];
Chris@10 422 cr[WS(rs, 6)] = FNMS(T15, T16, T13 * T14);
Chris@10 423 ci[WS(rs, 6)] = FMA(T15, T14, T13 * T16);
Chris@10 424 }
Chris@10 425 {
Chris@10 426 E TS, TU, TR, TT;
Chris@10 427 TS = Tm + TB;
Chris@10 428 TU = TP - TG;
Chris@10 429 TR = W[14];
Chris@10 430 TT = W[15];
Chris@10 431 cr[WS(rs, 8)] = FNMS(TT, TU, TR * TS);
Chris@10 432 ci[WS(rs, 8)] = FMA(TT, TS, TR * TU);
Chris@10 433 }
Chris@10 434 {
Chris@10 435 E TY, T12, TV, TZ;
Chris@10 436 TY = TW + TX;
Chris@10 437 T12 = T10 - T11;
Chris@10 438 TV = W[6];
Chris@10 439 TZ = W[7];
Chris@10 440 cr[WS(rs, 4)] = FNMS(TZ, T12, TV * TY);
Chris@10 441 ci[WS(rs, 4)] = FMA(TZ, TY, TV * T12);
Chris@10 442 }
Chris@10 443 }
Chris@10 444 {
Chris@10 445 E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
Chris@10 446 T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
Chris@10 447 T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
Chris@10 448 T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
Chris@10 449 T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
Chris@10 450 T1D = FNMS(KP250000000, T1p, T1i);
Chris@10 451 T1F = T1D - T1E;
Chris@10 452 T1R = T1E + T1D;
Chris@10 453 T1s = FNMS(KP250000000, T1f, T18);
Chris@10 454 T1u = T1s - T1t;
Chris@10 455 T1M = T1t + T1s;
Chris@10 456 {
Chris@10 457 E T1y, T1G, T1r, T1z;
Chris@10 458 T1y = T1u - T1x;
Chris@10 459 T1G = T1C + T1F;
Chris@10 460 T1r = W[12];
Chris@10 461 T1z = W[13];
Chris@10 462 cr[WS(rs, 7)] = FNMS(T1z, T1G, T1r * T1y);
Chris@10 463 ci[WS(rs, 7)] = FMA(T1r, T1G, T1z * T1y);
Chris@10 464 }
Chris@10 465 {
Chris@10 466 E T1U, T1W, T1T, T1V;
Chris@10 467 T1U = T1M + T1N;
Chris@10 468 T1W = T1R - T1Q;
Chris@10 469 T1T = W[16];
Chris@10 470 T1V = W[17];
Chris@10 471 cr[WS(rs, 9)] = FNMS(T1V, T1W, T1T * T1U);
Chris@10 472 ci[WS(rs, 9)] = FMA(T1T, T1W, T1V * T1U);
Chris@10 473 }
Chris@10 474 {
Chris@10 475 E T1I, T1K, T1H, T1J;
Chris@10 476 T1I = T1u + T1x;
Chris@10 477 T1K = T1F - T1C;
Chris@10 478 T1H = W[4];
Chris@10 479 T1J = W[5];
Chris@10 480 cr[WS(rs, 3)] = FNMS(T1J, T1K, T1H * T1I);
Chris@10 481 ci[WS(rs, 3)] = FMA(T1H, T1K, T1J * T1I);
Chris@10 482 }
Chris@10 483 {
Chris@10 484 E T1O, T1S, T1L, T1P;
Chris@10 485 T1O = T1M - T1N;
Chris@10 486 T1S = T1Q + T1R;
Chris@10 487 T1L = W[0];
Chris@10 488 T1P = W[1];
Chris@10 489 cr[WS(rs, 1)] = FNMS(T1P, T1S, T1L * T1O);
Chris@10 490 ci[WS(rs, 1)] = FMA(T1L, T1S, T1P * T1O);
Chris@10 491 }
Chris@10 492 }
Chris@10 493 }
Chris@10 494 }
Chris@10 495 }
Chris@10 496
Chris@10 497 static const tw_instr twinstr[] = {
Chris@10 498 {TW_FULL, 1, 10},
Chris@10 499 {TW_NEXT, 1, 0}
Chris@10 500 };
Chris@10 501
Chris@10 502 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {72, 30, 30, 0} };
Chris@10 503
Chris@10 504 void X(codelet_hb_10) (planner *p) {
Chris@10 505 X(khc2hc_register) (p, hb_10, &desc);
Chris@10 506 }
Chris@10 507 #endif /* HAVE_FMA */