annotate src/fftw-3.3.3/rdft/rdft-dht.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
Chris@10 23 is mainly useful because we can use Rader to compute DHTs of prime
Chris@10 24 sizes. It also allows us to express hc2r problems in terms of r2hc
Chris@10 25 (via dht-r2hc), and to do hc2r problems without destroying the input. */
Chris@10 26
Chris@10 27 #include "rdft.h"
Chris@10 28
Chris@10 29 typedef struct {
Chris@10 30 solver super;
Chris@10 31 } S;
Chris@10 32
Chris@10 33 typedef struct {
Chris@10 34 plan_rdft super;
Chris@10 35 plan *cld;
Chris@10 36 INT is, os;
Chris@10 37 INT n;
Chris@10 38 } P;
Chris@10 39
Chris@10 40 static void apply_r2hc(const plan *ego_, R *I, R *O)
Chris@10 41 {
Chris@10 42 const P *ego = (const P *) ego_;
Chris@10 43 INT os;
Chris@10 44 INT i, n;
Chris@10 45
Chris@10 46 {
Chris@10 47 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 48 cld->apply((plan *) cld, I, O);
Chris@10 49 }
Chris@10 50
Chris@10 51 n = ego->n;
Chris@10 52 os = ego->os;
Chris@10 53 for (i = 1; i < n - i; ++i) {
Chris@10 54 E a, b;
Chris@10 55 a = K(0.5) * O[os * i];
Chris@10 56 b = K(0.5) * O[os * (n - i)];
Chris@10 57 O[os * i] = a + b;
Chris@10 58 #if FFT_SIGN == -1
Chris@10 59 O[os * (n - i)] = b - a;
Chris@10 60 #else
Chris@10 61 O[os * (n - i)] = a - b;
Chris@10 62 #endif
Chris@10 63 }
Chris@10 64 }
Chris@10 65
Chris@10 66 /* hc2r, destroying input as usual */
Chris@10 67 static void apply_hc2r(const plan *ego_, R *I, R *O)
Chris@10 68 {
Chris@10 69 const P *ego = (const P *) ego_;
Chris@10 70 INT is = ego->is;
Chris@10 71 INT i, n = ego->n;
Chris@10 72
Chris@10 73 for (i = 1; i < n - i; ++i) {
Chris@10 74 E a, b;
Chris@10 75 a = I[is * i];
Chris@10 76 b = I[is * (n - i)];
Chris@10 77 #if FFT_SIGN == -1
Chris@10 78 I[is * i] = a - b;
Chris@10 79 I[is * (n - i)] = a + b;
Chris@10 80 #else
Chris@10 81 I[is * i] = a + b;
Chris@10 82 I[is * (n - i)] = a - b;
Chris@10 83 #endif
Chris@10 84 }
Chris@10 85
Chris@10 86 {
Chris@10 87 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 88 cld->apply((plan *) cld, I, O);
Chris@10 89 }
Chris@10 90 }
Chris@10 91
Chris@10 92 /* hc2r, without destroying input */
Chris@10 93 static void apply_hc2r_save(const plan *ego_, R *I, R *O)
Chris@10 94 {
Chris@10 95 const P *ego = (const P *) ego_;
Chris@10 96 INT is = ego->is, os = ego->os;
Chris@10 97 INT i, n = ego->n;
Chris@10 98
Chris@10 99 O[0] = I[0];
Chris@10 100 for (i = 1; i < n - i; ++i) {
Chris@10 101 E a, b;
Chris@10 102 a = I[is * i];
Chris@10 103 b = I[is * (n - i)];
Chris@10 104 #if FFT_SIGN == -1
Chris@10 105 O[os * i] = a - b;
Chris@10 106 O[os * (n - i)] = a + b;
Chris@10 107 #else
Chris@10 108 O[os * i] = a + b;
Chris@10 109 O[os * (n - i)] = a - b;
Chris@10 110 #endif
Chris@10 111 }
Chris@10 112 if (i == n - i)
Chris@10 113 O[os * i] = I[is * i];
Chris@10 114
Chris@10 115 {
Chris@10 116 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 117 cld->apply((plan *) cld, O, O);
Chris@10 118 }
Chris@10 119 }
Chris@10 120
Chris@10 121 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 122 {
Chris@10 123 P *ego = (P *) ego_;
Chris@10 124 X(plan_awake)(ego->cld, wakefulness);
Chris@10 125 }
Chris@10 126
Chris@10 127 static void destroy(plan *ego_)
Chris@10 128 {
Chris@10 129 P *ego = (P *) ego_;
Chris@10 130 X(plan_destroy_internal)(ego->cld);
Chris@10 131 }
Chris@10 132
Chris@10 133 static void print(const plan *ego_, printer *p)
Chris@10 134 {
Chris@10 135 const P *ego = (const P *) ego_;
Chris@10 136 p->print(p, "(%s-dht-%D%(%p%))",
Chris@10 137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
Chris@10 138 ego->n, ego->cld);
Chris@10 139 }
Chris@10 140
Chris@10 141 static int applicable0(const solver *ego_, const problem *p_)
Chris@10 142 {
Chris@10 143 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 144 UNUSED(ego_);
Chris@10 145
Chris@10 146 return (1
Chris@10 147 && p->sz->rnk == 1
Chris@10 148 && p->vecsz->rnk == 0
Chris@10 149 && (p->kind[0] == R2HC || p->kind[0] == HC2R)
Chris@10 150
Chris@10 151 /* hack: size-2 DHT etc. are defined as being equivalent
Chris@10 152 to size-2 R2HC in problem.c, so we need this to prevent
Chris@10 153 infinite loops for size 2 in EXHAUSTIVE mode: */
Chris@10 154 && p->sz->dims[0].n > 2
Chris@10 155 );
Chris@10 156 }
Chris@10 157
Chris@10 158 static int applicable(const solver *ego, const problem *p_,
Chris@10 159 const planner *plnr)
Chris@10 160 {
Chris@10 161 return (!NO_SLOWP(plnr) && applicable0(ego, p_));
Chris@10 162 }
Chris@10 163
Chris@10 164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 165 {
Chris@10 166 P *pln;
Chris@10 167 const problem_rdft *p;
Chris@10 168 problem *cldp;
Chris@10 169 plan *cld;
Chris@10 170
Chris@10 171 static const plan_adt padt = {
Chris@10 172 X(rdft_solve), awake, print, destroy
Chris@10 173 };
Chris@10 174
Chris@10 175 if (!applicable(ego_, p_, plnr))
Chris@10 176 return (plan *)0;
Chris@10 177
Chris@10 178 p = (const problem_rdft *) p_;
Chris@10 179
Chris@10 180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
Chris@10 181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
Chris@10 182 else {
Chris@10 183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
Chris@10 184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
Chris@10 185 X(tensor_destroy)(sz);
Chris@10 186 }
Chris@10 187 cld = X(mkplan_d)(plnr, cldp);
Chris@10 188 if (!cld) return (plan *)0;
Chris@10 189
Chris@10 190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
Chris@10 191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
Chris@10 192 apply_hc2r_save : apply_hc2r));
Chris@10 193 pln->n = p->sz->dims[0].n;
Chris@10 194 pln->is = p->sz->dims[0].is;
Chris@10 195 pln->os = p->sz->dims[0].os;
Chris@10 196 pln->cld = cld;
Chris@10 197
Chris@10 198 pln->super.super.ops = cld->ops;
Chris@10 199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
Chris@10 200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
Chris@10 201 if (p->kind[0] == R2HC)
Chris@10 202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
Chris@10 203 if (pln->super.apply == apply_hc2r_save)
Chris@10 204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
Chris@10 205
Chris@10 206 return &(pln->super.super);
Chris@10 207 }
Chris@10 208
Chris@10 209 /* constructor */
Chris@10 210 static solver *mksolver(void)
Chris@10 211 {
Chris@10 212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 213 S *slv = MKSOLVER(S, &sadt);
Chris@10 214 return &(slv->super);
Chris@10 215 }
Chris@10 216
Chris@10 217 void X(rdft_dht_register)(planner *p)
Chris@10 218 {
Chris@10 219 REGISTER_SOLVER(p, mksolver());
Chris@10 220 }