Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 #include "rdft.h"
|
Chris@10
|
22
|
Chris@10
|
23 /*
|
Chris@10
|
24 * Compute DHTs of prime sizes using Rader's trick: turn them
|
Chris@10
|
25 * into convolutions of size n - 1, which we then perform via a pair
|
Chris@10
|
26 * of FFTs. (We can then do prime real FFTs via rdft-dht.c.)
|
Chris@10
|
27 *
|
Chris@10
|
28 * Optionally (determined by the "pad" field of the solver), we can
|
Chris@10
|
29 * perform the (cyclic) convolution by zero-padding to a size
|
Chris@10
|
30 * >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors.
|
Chris@10
|
31 *
|
Chris@10
|
32 */
|
Chris@10
|
33
|
Chris@10
|
34 typedef struct {
|
Chris@10
|
35 solver super;
|
Chris@10
|
36 int pad;
|
Chris@10
|
37 } S;
|
Chris@10
|
38
|
Chris@10
|
39 typedef struct {
|
Chris@10
|
40 plan_rdft super;
|
Chris@10
|
41
|
Chris@10
|
42 plan *cld1, *cld2;
|
Chris@10
|
43 R *omega;
|
Chris@10
|
44 INT n, npad, g, ginv;
|
Chris@10
|
45 INT is, os;
|
Chris@10
|
46 plan *cld_omega;
|
Chris@10
|
47 } P;
|
Chris@10
|
48
|
Chris@10
|
49 static rader_tl *omegas = 0;
|
Chris@10
|
50
|
Chris@10
|
51 /***************************************************************************/
|
Chris@10
|
52
|
Chris@10
|
53 /* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
|
Chris@10
|
54 purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
|
Chris@10
|
55 This requires a few more operations, but allows us to share the same
|
Chris@10
|
56 plan/codelets for both Rader children. */
|
Chris@10
|
57 #define R2HC_ONLY_CONV 1
|
Chris@10
|
58
|
Chris@10
|
59 static void apply(const plan *ego_, R *I, R *O)
|
Chris@10
|
60 {
|
Chris@10
|
61 const P *ego = (const P *) ego_;
|
Chris@10
|
62 INT n = ego->n; /* prime */
|
Chris@10
|
63 INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
|
Chris@10
|
64 INT is = ego->is, os;
|
Chris@10
|
65 INT k, gpower, g;
|
Chris@10
|
66 R *buf, *omega;
|
Chris@10
|
67 R r0;
|
Chris@10
|
68
|
Chris@10
|
69 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
|
Chris@10
|
70
|
Chris@10
|
71 /* First, permute the input, storing in buf: */
|
Chris@10
|
72 g = ego->g;
|
Chris@10
|
73 for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
|
Chris@10
|
74 buf[k] = I[gpower * is];
|
Chris@10
|
75 }
|
Chris@10
|
76 /* gpower == g^(n-1) mod n == 1 */;
|
Chris@10
|
77
|
Chris@10
|
78 A(n - 1 <= npad);
|
Chris@10
|
79 for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
|
Chris@10
|
80 buf[k] = 0;
|
Chris@10
|
81
|
Chris@10
|
82 os = ego->os;
|
Chris@10
|
83
|
Chris@10
|
84 /* compute RDFT of buf, storing in buf (i.e., in-place): */
|
Chris@10
|
85 {
|
Chris@10
|
86 plan_rdft *cld = (plan_rdft *) ego->cld1;
|
Chris@10
|
87 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
88 }
|
Chris@10
|
89
|
Chris@10
|
90 /* set output DC component: */
|
Chris@10
|
91 O[0] = (r0 = I[0]) + buf[0];
|
Chris@10
|
92
|
Chris@10
|
93 /* now, multiply by omega: */
|
Chris@10
|
94 omega = ego->omega;
|
Chris@10
|
95 buf[0] *= omega[0];
|
Chris@10
|
96 for (k = 1; k < npad/2; ++k) {
|
Chris@10
|
97 E rB, iB, rW, iW, a, b;
|
Chris@10
|
98 rW = omega[k];
|
Chris@10
|
99 iW = omega[npad - k];
|
Chris@10
|
100 rB = buf[k];
|
Chris@10
|
101 iB = buf[npad - k];
|
Chris@10
|
102 a = rW * rB - iW * iB;
|
Chris@10
|
103 b = rW * iB + iW * rB;
|
Chris@10
|
104 #if R2HC_ONLY_CONV
|
Chris@10
|
105 buf[k] = a + b;
|
Chris@10
|
106 buf[npad - k] = a - b;
|
Chris@10
|
107 #else
|
Chris@10
|
108 buf[k] = a;
|
Chris@10
|
109 buf[npad - k] = b;
|
Chris@10
|
110 #endif
|
Chris@10
|
111 }
|
Chris@10
|
112 /* Nyquist component: */
|
Chris@10
|
113 A(k + k == npad); /* since npad is even */
|
Chris@10
|
114 buf[k] *= omega[k];
|
Chris@10
|
115
|
Chris@10
|
116 /* this will add input[0] to all of the outputs after the ifft */
|
Chris@10
|
117 buf[0] += r0;
|
Chris@10
|
118
|
Chris@10
|
119 /* inverse FFT: */
|
Chris@10
|
120 {
|
Chris@10
|
121 plan_rdft *cld = (plan_rdft *) ego->cld2;
|
Chris@10
|
122 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
123 }
|
Chris@10
|
124
|
Chris@10
|
125 /* do inverse permutation to unshuffle the output: */
|
Chris@10
|
126 A(gpower == 1);
|
Chris@10
|
127 #if R2HC_ONLY_CONV
|
Chris@10
|
128 O[os] = buf[0];
|
Chris@10
|
129 gpower = g = ego->ginv;
|
Chris@10
|
130 A(npad == n - 1 || npad/2 >= n - 1);
|
Chris@10
|
131 if (npad == n - 1) {
|
Chris@10
|
132 for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
|
Chris@10
|
133 O[gpower * os] = buf[k] + buf[npad - k];
|
Chris@10
|
134 }
|
Chris@10
|
135 O[gpower * os] = buf[k];
|
Chris@10
|
136 ++k, gpower = MULMOD(gpower, g, n);
|
Chris@10
|
137 for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
|
Chris@10
|
138 O[gpower * os] = buf[npad - k] - buf[k];
|
Chris@10
|
139 }
|
Chris@10
|
140 }
|
Chris@10
|
141 else {
|
Chris@10
|
142 for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
|
Chris@10
|
143 O[gpower * os] = buf[k] + buf[npad - k];
|
Chris@10
|
144 }
|
Chris@10
|
145 }
|
Chris@10
|
146 #else
|
Chris@10
|
147 g = ego->ginv;
|
Chris@10
|
148 for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
|
Chris@10
|
149 O[gpower * os] = buf[k];
|
Chris@10
|
150 }
|
Chris@10
|
151 #endif
|
Chris@10
|
152 A(gpower == 1);
|
Chris@10
|
153
|
Chris@10
|
154 X(ifree)(buf);
|
Chris@10
|
155 }
|
Chris@10
|
156
|
Chris@10
|
157 static R *mkomega(enum wakefulness wakefulness,
|
Chris@10
|
158 plan *p_, INT n, INT npad, INT ginv)
|
Chris@10
|
159 {
|
Chris@10
|
160 plan_rdft *p = (plan_rdft *) p_;
|
Chris@10
|
161 R *omega;
|
Chris@10
|
162 INT i, gpower;
|
Chris@10
|
163 trigreal scale;
|
Chris@10
|
164 triggen *t;
|
Chris@10
|
165
|
Chris@10
|
166 if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas)))
|
Chris@10
|
167 return omega;
|
Chris@10
|
168
|
Chris@10
|
169 omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);
|
Chris@10
|
170
|
Chris@10
|
171 scale = npad; /* normalization for convolution */
|
Chris@10
|
172
|
Chris@10
|
173 t = X(mktriggen)(wakefulness, n);
|
Chris@10
|
174 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
|
Chris@10
|
175 trigreal w[2];
|
Chris@10
|
176 t->cexpl(t, gpower, w);
|
Chris@10
|
177 omega[i] = (w[0] + w[1]) / scale;
|
Chris@10
|
178 }
|
Chris@10
|
179 X(triggen_destroy)(t);
|
Chris@10
|
180 A(gpower == 1);
|
Chris@10
|
181
|
Chris@10
|
182 A(npad == n - 1 || npad >= 2*(n - 1) - 1);
|
Chris@10
|
183
|
Chris@10
|
184 for (; i < npad; ++i)
|
Chris@10
|
185 omega[i] = K(0.0);
|
Chris@10
|
186 if (npad > n - 1)
|
Chris@10
|
187 for (i = 1; i < n-1; ++i)
|
Chris@10
|
188 omega[npad - i] = omega[n - 1 - i];
|
Chris@10
|
189
|
Chris@10
|
190 p->apply(p_, omega, omega);
|
Chris@10
|
191
|
Chris@10
|
192 X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
|
Chris@10
|
193 return omega;
|
Chris@10
|
194 }
|
Chris@10
|
195
|
Chris@10
|
196 static void free_omega(R *omega)
|
Chris@10
|
197 {
|
Chris@10
|
198 X(rader_tl_delete)(omega, &omegas);
|
Chris@10
|
199 }
|
Chris@10
|
200
|
Chris@10
|
201 /***************************************************************************/
|
Chris@10
|
202
|
Chris@10
|
203 static void awake(plan *ego_, enum wakefulness wakefulness)
|
Chris@10
|
204 {
|
Chris@10
|
205 P *ego = (P *) ego_;
|
Chris@10
|
206
|
Chris@10
|
207 X(plan_awake)(ego->cld1, wakefulness);
|
Chris@10
|
208 X(plan_awake)(ego->cld2, wakefulness);
|
Chris@10
|
209 X(plan_awake)(ego->cld_omega, wakefulness);
|
Chris@10
|
210
|
Chris@10
|
211 switch (wakefulness) {
|
Chris@10
|
212 case SLEEPY:
|
Chris@10
|
213 free_omega(ego->omega);
|
Chris@10
|
214 ego->omega = 0;
|
Chris@10
|
215 break;
|
Chris@10
|
216 default:
|
Chris@10
|
217 ego->g = X(find_generator)(ego->n);
|
Chris@10
|
218 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
|
Chris@10
|
219 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
|
Chris@10
|
220
|
Chris@10
|
221 A(!ego->omega);
|
Chris@10
|
222 ego->omega = mkomega(wakefulness,
|
Chris@10
|
223 ego->cld_omega,ego->n,ego->npad,ego->ginv);
|
Chris@10
|
224 break;
|
Chris@10
|
225 }
|
Chris@10
|
226 }
|
Chris@10
|
227
|
Chris@10
|
228 static void destroy(plan *ego_)
|
Chris@10
|
229 {
|
Chris@10
|
230 P *ego = (P *) ego_;
|
Chris@10
|
231 X(plan_destroy_internal)(ego->cld_omega);
|
Chris@10
|
232 X(plan_destroy_internal)(ego->cld2);
|
Chris@10
|
233 X(plan_destroy_internal)(ego->cld1);
|
Chris@10
|
234 }
|
Chris@10
|
235
|
Chris@10
|
236 static void print(const plan *ego_, printer *p)
|
Chris@10
|
237 {
|
Chris@10
|
238 const P *ego = (const P *) ego_;
|
Chris@10
|
239
|
Chris@10
|
240 p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
|
Chris@10
|
241 ego->n, ego->npad, ego->is, ego->os, ego->cld1);
|
Chris@10
|
242 if (ego->cld2 != ego->cld1)
|
Chris@10
|
243 p->print(p, "%(%p%)", ego->cld2);
|
Chris@10
|
244 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
|
Chris@10
|
245 p->print(p, "%(%p%)", ego->cld_omega);
|
Chris@10
|
246 p->putchr(p, ')');
|
Chris@10
|
247 }
|
Chris@10
|
248
|
Chris@10
|
249 static int applicable(const solver *ego, const problem *p_, const planner *plnr)
|
Chris@10
|
250 {
|
Chris@10
|
251 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
252 UNUSED(ego);
|
Chris@10
|
253 return (1
|
Chris@10
|
254 && p->sz->rnk == 1
|
Chris@10
|
255 && p->vecsz->rnk == 0
|
Chris@10
|
256 && p->kind[0] == DHT
|
Chris@10
|
257 && X(is_prime)(p->sz->dims[0].n)
|
Chris@10
|
258 && p->sz->dims[0].n > 2
|
Chris@10
|
259 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
|
Chris@10
|
260 /* proclaim the solver SLOW if p-1 is not easily
|
Chris@10
|
261 factorizable. Unlike in the complex case where
|
Chris@10
|
262 Bluestein can solve the problem, in the DHT case we
|
Chris@10
|
263 may have no other choice */
|
Chris@10
|
264 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
|
Chris@10
|
265 );
|
Chris@10
|
266 }
|
Chris@10
|
267
|
Chris@10
|
268 static INT choose_transform_size(INT minsz)
|
Chris@10
|
269 {
|
Chris@10
|
270 static const INT primes[] = { 2, 3, 5, 0 };
|
Chris@10
|
271 while (!X(factors_into)(minsz, primes) || minsz % 2)
|
Chris@10
|
272 ++minsz;
|
Chris@10
|
273 return minsz;
|
Chris@10
|
274 }
|
Chris@10
|
275
|
Chris@10
|
276 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
Chris@10
|
277 {
|
Chris@10
|
278 const S *ego = (const S *) ego_;
|
Chris@10
|
279 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
280 P *pln;
|
Chris@10
|
281 INT n, npad;
|
Chris@10
|
282 INT is, os;
|
Chris@10
|
283 plan *cld1 = (plan *) 0;
|
Chris@10
|
284 plan *cld2 = (plan *) 0;
|
Chris@10
|
285 plan *cld_omega = (plan *) 0;
|
Chris@10
|
286 R *buf = (R *) 0;
|
Chris@10
|
287 problem *cldp;
|
Chris@10
|
288
|
Chris@10
|
289 static const plan_adt padt = {
|
Chris@10
|
290 X(rdft_solve), awake, print, destroy
|
Chris@10
|
291 };
|
Chris@10
|
292
|
Chris@10
|
293 if (!applicable(ego_, p_, plnr))
|
Chris@10
|
294 return (plan *) 0;
|
Chris@10
|
295
|
Chris@10
|
296 n = p->sz->dims[0].n;
|
Chris@10
|
297 is = p->sz->dims[0].is;
|
Chris@10
|
298 os = p->sz->dims[0].os;
|
Chris@10
|
299
|
Chris@10
|
300 if (ego->pad)
|
Chris@10
|
301 npad = choose_transform_size(2 * (n - 1) - 1);
|
Chris@10
|
302 else
|
Chris@10
|
303 npad = n - 1;
|
Chris@10
|
304
|
Chris@10
|
305 /* initial allocation for the purpose of planning */
|
Chris@10
|
306 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
|
Chris@10
|
307
|
Chris@10
|
308 cld1 = X(mkplan_f_d)(plnr,
|
Chris@10
|
309 X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
|
Chris@10
|
310 X(mktensor_1d)(1, 0, 0),
|
Chris@10
|
311 buf, buf,
|
Chris@10
|
312 R2HC),
|
Chris@10
|
313 NO_SLOW, 0, 0);
|
Chris@10
|
314 if (!cld1) goto nada;
|
Chris@10
|
315
|
Chris@10
|
316 cldp =
|
Chris@10
|
317 X(mkproblem_rdft_1_d)(
|
Chris@10
|
318 X(mktensor_1d)(npad, 1, 1),
|
Chris@10
|
319 X(mktensor_1d)(1, 0, 0),
|
Chris@10
|
320 buf, buf,
|
Chris@10
|
321 #if R2HC_ONLY_CONV
|
Chris@10
|
322 R2HC
|
Chris@10
|
323 #else
|
Chris@10
|
324 HC2R
|
Chris@10
|
325 #endif
|
Chris@10
|
326 );
|
Chris@10
|
327 if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
|
Chris@10
|
328 goto nada;
|
Chris@10
|
329
|
Chris@10
|
330 /* plan for omega */
|
Chris@10
|
331 cld_omega = X(mkplan_f_d)(plnr,
|
Chris@10
|
332 X(mkproblem_rdft_1_d)(
|
Chris@10
|
333 X(mktensor_1d)(npad, 1, 1),
|
Chris@10
|
334 X(mktensor_1d)(1, 0, 0),
|
Chris@10
|
335 buf, buf, R2HC),
|
Chris@10
|
336 NO_SLOW, ESTIMATE, 0);
|
Chris@10
|
337 if (!cld_omega) goto nada;
|
Chris@10
|
338
|
Chris@10
|
339 /* deallocate buffers; let awake() or apply() allocate them for real */
|
Chris@10
|
340 X(ifree)(buf);
|
Chris@10
|
341 buf = 0;
|
Chris@10
|
342
|
Chris@10
|
343 pln = MKPLAN_RDFT(P, &padt, apply);
|
Chris@10
|
344 pln->cld1 = cld1;
|
Chris@10
|
345 pln->cld2 = cld2;
|
Chris@10
|
346 pln->cld_omega = cld_omega;
|
Chris@10
|
347 pln->omega = 0;
|
Chris@10
|
348 pln->n = n;
|
Chris@10
|
349 pln->npad = npad;
|
Chris@10
|
350 pln->is = is;
|
Chris@10
|
351 pln->os = os;
|
Chris@10
|
352
|
Chris@10
|
353 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
Chris@10
|
354 pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
|
Chris@10
|
355 pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
|
Chris@10
|
356 pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
|
Chris@10
|
357 #if R2HC_ONLY_CONV
|
Chris@10
|
358 pln->super.super.ops.other += n-2 - ego->pad;
|
Chris@10
|
359 pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
|
Chris@10
|
360 #endif
|
Chris@10
|
361
|
Chris@10
|
362 return &(pln->super.super);
|
Chris@10
|
363
|
Chris@10
|
364 nada:
|
Chris@10
|
365 X(ifree0)(buf);
|
Chris@10
|
366 X(plan_destroy_internal)(cld_omega);
|
Chris@10
|
367 X(plan_destroy_internal)(cld2);
|
Chris@10
|
368 X(plan_destroy_internal)(cld1);
|
Chris@10
|
369 return 0;
|
Chris@10
|
370 }
|
Chris@10
|
371
|
Chris@10
|
372 /* constructors */
|
Chris@10
|
373
|
Chris@10
|
374 static solver *mksolver(int pad)
|
Chris@10
|
375 {
|
Chris@10
|
376 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
Chris@10
|
377 S *slv = MKSOLVER(S, &sadt);
|
Chris@10
|
378 slv->pad = pad;
|
Chris@10
|
379 return &(slv->super);
|
Chris@10
|
380 }
|
Chris@10
|
381
|
Chris@10
|
382 void X(dht_rader_register)(planner *p)
|
Chris@10
|
383 {
|
Chris@10
|
384 REGISTER_SOLVER(p, mksolver(0));
|
Chris@10
|
385 REGISTER_SOLVER(p, mksolver(1));
|
Chris@10
|
386 }
|