annotate src/fftw-3.3.3/rdft/buffered2.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* buffering of rdft2. We always buffer the complex array */
Chris@10 23
Chris@10 24 #include "rdft.h"
Chris@10 25 #include "dft.h"
Chris@10 26
Chris@10 27 typedef struct {
Chris@10 28 solver super;
Chris@10 29 int maxnbuf_ndx;
Chris@10 30 } S;
Chris@10 31
Chris@10 32 static const INT maxnbufs[] = { 8, 256 };
Chris@10 33
Chris@10 34 typedef struct {
Chris@10 35 plan_rdft2 super;
Chris@10 36
Chris@10 37 plan *cld, *cldcpy, *cldrest;
Chris@10 38 INT n, vl, nbuf, bufdist;
Chris@10 39 INT ivs_by_nbuf, ovs_by_nbuf;
Chris@10 40 INT ioffset, roffset;
Chris@10 41 } P;
Chris@10 42
Chris@10 43 /* transform a vector input with the help of bufs */
Chris@10 44 static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
Chris@10 45 {
Chris@10 46 const P *ego = (const P *) ego_;
Chris@10 47 plan_rdft2 *cld = (plan_rdft2 *) ego->cld;
Chris@10 48 plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
Chris@10 49 INT i, vl = ego->vl, nbuf = ego->nbuf;
Chris@10 50 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
Chris@10 51 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
Chris@10 52 R *bufr = bufs + ego->roffset;
Chris@10 53 R *bufi = bufs + ego->ioffset;
Chris@10 54 plan_rdft2 *cldrest;
Chris@10 55
Chris@10 56 for (i = nbuf; i <= vl; i += nbuf) {
Chris@10 57 /* transform to bufs: */
Chris@10 58 cld->apply((plan *) cld, r0, r1, bufr, bufi);
Chris@10 59 r0 += ivs_by_nbuf; r1 += ivs_by_nbuf;
Chris@10 60
Chris@10 61 /* copy back */
Chris@10 62 cldcpy->apply((plan *) cldcpy, bufr, bufi, cr, ci);
Chris@10 63 cr += ovs_by_nbuf; ci += ovs_by_nbuf;
Chris@10 64 }
Chris@10 65
Chris@10 66 X(ifree)(bufs);
Chris@10 67
Chris@10 68 /* Do the remaining transforms, if any: */
Chris@10 69 cldrest = (plan_rdft2 *) ego->cldrest;
Chris@10 70 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
Chris@10 71 }
Chris@10 72
Chris@10 73 /* for hc2r problems, copy the input into buffer, and then
Chris@10 74 transform buffer->output, which allows for destruction of the
Chris@10 75 buffer */
Chris@10 76 static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
Chris@10 77 {
Chris@10 78 const P *ego = (const P *) ego_;
Chris@10 79 plan_rdft2 *cld = (plan_rdft2 *) ego->cld;
Chris@10 80 plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
Chris@10 81 INT i, vl = ego->vl, nbuf = ego->nbuf;
Chris@10 82 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
Chris@10 83 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
Chris@10 84 R *bufr = bufs + ego->roffset;
Chris@10 85 R *bufi = bufs + ego->ioffset;
Chris@10 86 plan_rdft2 *cldrest;
Chris@10 87
Chris@10 88 for (i = nbuf; i <= vl; i += nbuf) {
Chris@10 89 /* copy input into bufs: */
Chris@10 90 cldcpy->apply((plan *) cldcpy, cr, ci, bufr, bufi);
Chris@10 91 cr += ivs_by_nbuf; ci += ivs_by_nbuf;
Chris@10 92
Chris@10 93 /* transform to output */
Chris@10 94 cld->apply((plan *) cld, r0, r1, bufr, bufi);
Chris@10 95 r0 += ovs_by_nbuf; r1 += ovs_by_nbuf;
Chris@10 96 }
Chris@10 97
Chris@10 98 X(ifree)(bufs);
Chris@10 99
Chris@10 100 /* Do the remaining transforms, if any: */
Chris@10 101 cldrest = (plan_rdft2 *) ego->cldrest;
Chris@10 102 cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
Chris@10 103 }
Chris@10 104
Chris@10 105
Chris@10 106 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 107 {
Chris@10 108 P *ego = (P *) ego_;
Chris@10 109
Chris@10 110 X(plan_awake)(ego->cld, wakefulness);
Chris@10 111 X(plan_awake)(ego->cldcpy, wakefulness);
Chris@10 112 X(plan_awake)(ego->cldrest, wakefulness);
Chris@10 113 }
Chris@10 114
Chris@10 115 static void destroy(plan *ego_)
Chris@10 116 {
Chris@10 117 P *ego = (P *) ego_;
Chris@10 118 X(plan_destroy_internal)(ego->cldrest);
Chris@10 119 X(plan_destroy_internal)(ego->cldcpy);
Chris@10 120 X(plan_destroy_internal)(ego->cld);
Chris@10 121 }
Chris@10 122
Chris@10 123 static void print(const plan *ego_, printer *p)
Chris@10 124 {
Chris@10 125 const P *ego = (const P *) ego_;
Chris@10 126 p->print(p, "(rdft2-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
Chris@10 127 ego->n, ego->nbuf,
Chris@10 128 ego->vl, ego->bufdist % ego->n,
Chris@10 129 ego->cld, ego->cldcpy, ego->cldrest);
Chris@10 130 }
Chris@10 131
Chris@10 132 static int applicable0(const S *ego, const problem *p_, const planner *plnr)
Chris@10 133 {
Chris@10 134 const problem_rdft2 *p = (const problem_rdft2 *) p_;
Chris@10 135 iodim *d = p->sz->dims;
Chris@10 136
Chris@10 137 if (1
Chris@10 138 && p->vecsz->rnk <= 1
Chris@10 139 && p->sz->rnk == 1
Chris@10 140
Chris@10 141 /* we assume even n throughout */
Chris@10 142 && (d[0].n % 2) == 0
Chris@10 143
Chris@10 144 /* and we only consider these two cases */
Chris@10 145 && (p->kind == R2HC || p->kind == HC2R)
Chris@10 146
Chris@10 147 ) {
Chris@10 148 INT vl, ivs, ovs;
Chris@10 149 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
Chris@10 150
Chris@10 151 if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr))
Chris@10 152 return 0;
Chris@10 153
Chris@10 154 /* if this solver is redundant, in the sense that a solver
Chris@10 155 of lower index generates the same plan, then prune this
Chris@10 156 solver */
Chris@10 157 if (X(nbuf_redundant)(d[0].n, vl,
Chris@10 158 ego->maxnbuf_ndx,
Chris@10 159 maxnbufs, NELEM(maxnbufs)))
Chris@10 160 return 0;
Chris@10 161
Chris@10 162 if (p->r0 != p->cr) {
Chris@10 163 if (p->kind == HC2R) {
Chris@10 164 /* Allow HC2R problems only if the input is to be
Chris@10 165 preserved. This solver sets NO_DESTROY_INPUT,
Chris@10 166 which prevents infinite loops */
Chris@10 167 return (NO_DESTROY_INPUTP(plnr));
Chris@10 168 } else {
Chris@10 169 /*
Chris@10 170 In principle, the buffered transforms might be useful
Chris@10 171 when working out of place. However, in order to
Chris@10 172 prevent infinite loops in the planner, we require
Chris@10 173 that the output stride of the buffered transforms be
Chris@10 174 greater than 2.
Chris@10 175 */
Chris@10 176 return (d[0].os > 2);
Chris@10 177 }
Chris@10 178 }
Chris@10 179
Chris@10 180 /*
Chris@10 181 * If the problem is in place, the input/output strides must
Chris@10 182 * be the same or the whole thing must fit in the buffer.
Chris@10 183 */
Chris@10 184 if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
Chris@10 185 return 1;
Chris@10 186
Chris@10 187 if (/* fits into buffer: */
Chris@10 188 ((p->vecsz->rnk == 0)
Chris@10 189 ||
Chris@10 190 (X(nbuf)(d[0].n, p->vecsz->dims[0].n,
Chris@10 191 maxnbufs[ego->maxnbuf_ndx])
Chris@10 192 == p->vecsz->dims[0].n)))
Chris@10 193 return 1;
Chris@10 194 }
Chris@10 195
Chris@10 196 return 0;
Chris@10 197 }
Chris@10 198
Chris@10 199 static int applicable(const S *ego, const problem *p_, const planner *plnr)
Chris@10 200 {
Chris@10 201 const problem_rdft2 *p;
Chris@10 202
Chris@10 203 if (NO_BUFFERINGP(plnr)) return 0;
Chris@10 204
Chris@10 205 if (!applicable0(ego, p_, plnr)) return 0;
Chris@10 206
Chris@10 207 p = (const problem_rdft2 *) p_;
Chris@10 208 if (p->kind == HC2R) {
Chris@10 209 if (NO_UGLYP(plnr)) {
Chris@10 210 /* UGLY if in-place and too big, since the problem
Chris@10 211 could be solved via transpositions */
Chris@10 212 if (p->r0 == p->cr && X(toobig)(p->sz->dims[0].n))
Chris@10 213 return 0;
Chris@10 214 }
Chris@10 215 } else {
Chris@10 216 if (NO_UGLYP(plnr)) {
Chris@10 217 if (p->r0 != p->cr || X(toobig)(p->sz->dims[0].n))
Chris@10 218 return 0;
Chris@10 219 }
Chris@10 220 }
Chris@10 221 return 1;
Chris@10 222 }
Chris@10 223
Chris@10 224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 225 {
Chris@10 226 P *pln;
Chris@10 227 const S *ego = (const S *)ego_;
Chris@10 228 plan *cld = (plan *) 0;
Chris@10 229 plan *cldcpy = (plan *) 0;
Chris@10 230 plan *cldrest = (plan *) 0;
Chris@10 231 const problem_rdft2 *p = (const problem_rdft2 *) p_;
Chris@10 232 R *bufs = (R *) 0;
Chris@10 233 INT nbuf = 0, bufdist, n, vl;
Chris@10 234 INT ivs, ovs, ioffset, roffset, id, od;
Chris@10 235
Chris@10 236 static const plan_adt padt = {
Chris@10 237 X(rdft2_solve), awake, print, destroy
Chris@10 238 };
Chris@10 239
Chris@10 240 if (!applicable(ego, p_, plnr))
Chris@10 241 goto nada;
Chris@10 242
Chris@10 243 n = X(tensor_sz)(p->sz);
Chris@10 244 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
Chris@10 245
Chris@10 246 nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
Chris@10 247 bufdist = X(bufdist)(n + 2, vl); /* complex-side rdft2 stores N+2
Chris@10 248 real numbers */
Chris@10 249 A(nbuf > 0);
Chris@10 250
Chris@10 251 /* attempt to keep real and imaginary part in the same order,
Chris@10 252 so as to allow optimizations in the the copy plan */
Chris@10 253 roffset = (p->cr - p->ci > 0) ? (INT)1 : (INT)0;
Chris@10 254 ioffset = 1 - roffset;
Chris@10 255
Chris@10 256 /* initial allocation for the purpose of planning */
Chris@10 257 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
Chris@10 258
Chris@10 259 id = ivs * (nbuf * (vl / nbuf));
Chris@10 260 od = ovs * (nbuf * (vl / nbuf));
Chris@10 261
Chris@10 262 if (p->kind == R2HC) {
Chris@10 263 /* allow destruction of input if problem is in place */
Chris@10 264 cld = X(mkplan_f_d)(
Chris@10 265 plnr,
Chris@10 266 X(mkproblem_rdft2_d)(
Chris@10 267 X(mktensor_1d)(n, p->sz->dims[0].is, 2),
Chris@10 268 X(mktensor_1d)(nbuf, ivs, bufdist),
Chris@10 269 TAINT(p->r0, ivs * nbuf), TAINT(p->r1, ivs * nbuf),
Chris@10 270 bufs + roffset, bufs + ioffset, p->kind),
Chris@10 271 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
Chris@10 272 if (!cld) goto nada;
Chris@10 273
Chris@10 274 /* copying back from the buffer is a rank-0 DFT: */
Chris@10 275 cldcpy = X(mkplan_d)(
Chris@10 276 plnr,
Chris@10 277 X(mkproblem_dft_d)(
Chris@10 278 X(mktensor_0d)(),
Chris@10 279 X(mktensor_2d)(nbuf, bufdist, ovs,
Chris@10 280 n/2+1, 2, p->sz->dims[0].os),
Chris@10 281 bufs + roffset, bufs + ioffset,
Chris@10 282 TAINT(p->cr, ovs * nbuf), TAINT(p->ci, ovs * nbuf) ));
Chris@10 283 if (!cldcpy) goto nada;
Chris@10 284
Chris@10 285 X(ifree)(bufs); bufs = 0;
Chris@10 286
Chris@10 287 cldrest = X(mkplan_d)(plnr,
Chris@10 288 X(mkproblem_rdft2_d)(
Chris@10 289 X(tensor_copy)(p->sz),
Chris@10 290 X(mktensor_1d)(vl % nbuf, ivs, ovs),
Chris@10 291 p->r0 + id, p->r1 + id,
Chris@10 292 p->cr + od, p->ci + od,
Chris@10 293 p->kind));
Chris@10 294 if (!cldrest) goto nada;
Chris@10 295 pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
Chris@10 296 } else {
Chris@10 297 /* allow destruction of buffer */
Chris@10 298 cld = X(mkplan_f_d)(
Chris@10 299 plnr,
Chris@10 300 X(mkproblem_rdft2_d)(
Chris@10 301 X(mktensor_1d)(n, 2, p->sz->dims[0].os),
Chris@10 302 X(mktensor_1d)(nbuf, bufdist, ovs),
Chris@10 303 TAINT(p->r0, ovs * nbuf), TAINT(p->r1, ovs * nbuf),
Chris@10 304 bufs + roffset, bufs + ioffset, p->kind),
Chris@10 305 0, 0, NO_DESTROY_INPUT);
Chris@10 306 if (!cld) goto nada;
Chris@10 307
Chris@10 308 /* copying input into buffer is a rank-0 DFT: */
Chris@10 309 cldcpy = X(mkplan_d)(
Chris@10 310 plnr,
Chris@10 311 X(mkproblem_dft_d)(
Chris@10 312 X(mktensor_0d)(),
Chris@10 313 X(mktensor_2d)(nbuf, ivs, bufdist,
Chris@10 314 n/2+1, p->sz->dims[0].is, 2),
Chris@10 315 TAINT(p->cr, ivs * nbuf), TAINT(p->ci, ivs * nbuf),
Chris@10 316 bufs + roffset, bufs + ioffset));
Chris@10 317 if (!cldcpy) goto nada;
Chris@10 318
Chris@10 319 X(ifree)(bufs); bufs = 0;
Chris@10 320
Chris@10 321 cldrest = X(mkplan_d)(plnr,
Chris@10 322 X(mkproblem_rdft2_d)(
Chris@10 323 X(tensor_copy)(p->sz),
Chris@10 324 X(mktensor_1d)(vl % nbuf, ivs, ovs),
Chris@10 325 p->r0 + od, p->r1 + od,
Chris@10 326 p->cr + id, p->ci + id,
Chris@10 327 p->kind));
Chris@10 328 if (!cldrest) goto nada;
Chris@10 329
Chris@10 330 pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
Chris@10 331 }
Chris@10 332
Chris@10 333 pln->cld = cld;
Chris@10 334 pln->cldcpy = cldcpy;
Chris@10 335 pln->cldrest = cldrest;
Chris@10 336 pln->n = n;
Chris@10 337 pln->vl = vl;
Chris@10 338 pln->ivs_by_nbuf = ivs * nbuf;
Chris@10 339 pln->ovs_by_nbuf = ovs * nbuf;
Chris@10 340 pln->roffset = roffset;
Chris@10 341 pln->ioffset = ioffset;
Chris@10 342
Chris@10 343 pln->nbuf = nbuf;
Chris@10 344 pln->bufdist = bufdist;
Chris@10 345
Chris@10 346 {
Chris@10 347 opcnt t;
Chris@10 348 X(ops_add)(&cld->ops, &cldcpy->ops, &t);
Chris@10 349 X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
Chris@10 350 }
Chris@10 351
Chris@10 352 return &(pln->super.super);
Chris@10 353
Chris@10 354 nada:
Chris@10 355 X(ifree0)(bufs);
Chris@10 356 X(plan_destroy_internal)(cldrest);
Chris@10 357 X(plan_destroy_internal)(cldcpy);
Chris@10 358 X(plan_destroy_internal)(cld);
Chris@10 359 return (plan *) 0;
Chris@10 360 }
Chris@10 361
Chris@10 362 static solver *mksolver(int maxnbuf_ndx)
Chris@10 363 {
Chris@10 364 static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
Chris@10 365 S *slv = MKSOLVER(S, &sadt);
Chris@10 366 slv->maxnbuf_ndx = maxnbuf_ndx;
Chris@10 367 return &(slv->super);
Chris@10 368 }
Chris@10 369
Chris@10 370 void X(rdft2_buffered_register)(planner *p)
Chris@10 371 {
Chris@10 372 size_t i;
Chris@10 373 for (i = 0; i < NELEM(maxnbufs); ++i)
Chris@10 374 REGISTER_SOLVER(p, mksolver(i));
Chris@10 375 }