annotate src/fftw-3.3.3/mpi/transpose-recurse.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* Recursive "radix-r" distributed transpose, which breaks a transpose
Chris@10 22 over p processes into p/r transposes over r processes plus r
Chris@10 23 transposes over p/r processes. If performed recursively, this
Chris@10 24 produces a total of O(p log p) messages vs. O(p^2) messages for a
Chris@10 25 direct approach.
Chris@10 26
Chris@10 27 However, this is not necessarily an improvement. The total size of
Chris@10 28 all the messages is actually increased from O(N) to O(N log p)
Chris@10 29 where N is the total data size. Also, the amount of local data
Chris@10 30 rearrangement is increased. So, it's not clear, a priori, what the
Chris@10 31 best algorithm will be, and we'll leave it to the planner. (In
Chris@10 32 theory and practice, it looks like this becomes advantageous for
Chris@10 33 large p, in the limit where the message sizes are small and
Chris@10 34 latency-dominated.)
Chris@10 35 */
Chris@10 36
Chris@10 37 #include "mpi-transpose.h"
Chris@10 38 #include <string.h>
Chris@10 39
Chris@10 40 typedef struct {
Chris@10 41 solver super;
Chris@10 42 int (*radix)(int np);
Chris@10 43 const char *nam;
Chris@10 44 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
Chris@10 45 } S;
Chris@10 46
Chris@10 47 typedef struct {
Chris@10 48 plan_mpi_transpose super;
Chris@10 49
Chris@10 50 plan *cld1, *cldtr, *cldtm;
Chris@10 51 int preserve_input;
Chris@10 52
Chris@10 53 int r; /* "radix" */
Chris@10 54 const char *nam;
Chris@10 55 } P;
Chris@10 56
Chris@10 57 static void apply(const plan *ego_, R *I, R *O)
Chris@10 58 {
Chris@10 59 const P *ego = (const P *) ego_;
Chris@10 60 plan_rdft *cld1, *cldtr, *cldtm;
Chris@10 61
Chris@10 62 cld1 = (plan_rdft *) ego->cld1;
Chris@10 63 if (cld1) cld1->apply((plan *) cld1, I, O);
Chris@10 64
Chris@10 65 if (ego->preserve_input) I = O;
Chris@10 66
Chris@10 67 cldtr = (plan_rdft *) ego->cldtr;
Chris@10 68 if (cldtr) cldtr->apply((plan *) cldtr, O, I);
Chris@10 69
Chris@10 70 cldtm = (plan_rdft *) ego->cldtm;
Chris@10 71 if (cldtm) cldtm->apply((plan *) cldtm, I, O);
Chris@10 72 }
Chris@10 73
Chris@10 74 static int radix_sqrt(int np)
Chris@10 75 {
Chris@10 76 int r;
Chris@10 77 for (r = (int) (X(isqrt)(np)); np % r != 0; ++r)
Chris@10 78 ;
Chris@10 79 return r;
Chris@10 80 }
Chris@10 81
Chris@10 82 static int radix_first(int np)
Chris@10 83 {
Chris@10 84 int r = (int) (X(first_divisor)(np));
Chris@10 85 return (r >= (int) (X(isqrt)(np)) ? 0 : r);
Chris@10 86 }
Chris@10 87
Chris@10 88 /* the local allocated space on process pe required for the given transpose
Chris@10 89 dimensions and block sizes */
Chris@10 90 static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe)
Chris@10 91 {
Chris@10 92 return X(imax)(XM(block)(nx, block, pe) * ny,
Chris@10 93 nx * XM(block)(ny, tblock, pe));
Chris@10 94 }
Chris@10 95
Chris@10 96 /* check whether the recursive transposes fit within the space
Chris@10 97 that must have been allocated on each process for this transpose;
Chris@10 98 this must be modified if the subdivision in mkplan is changed! */
Chris@10 99 static int enough_space(INT nx, INT ny, INT block, INT tblock,
Chris@10 100 int r, int n_pes)
Chris@10 101 {
Chris@10 102 int pe;
Chris@10 103 int m = n_pes / r;
Chris@10 104 for (pe = 0; pe < n_pes; ++pe) {
Chris@10 105 INT space = transpose_space(nx, ny, block, tblock, pe);
Chris@10 106 INT b1 = XM(block)(nx, r * block, pe / r);
Chris@10 107 INT b2 = XM(block)(ny, m * tblock, pe % r);
Chris@10 108 if (transpose_space(b1, ny, block, m*tblock, pe % r) > space
Chris@10 109 || transpose_space(nx, b2, r*block, tblock, pe / r) > space)
Chris@10 110 return 0;
Chris@10 111 }
Chris@10 112 return 1;
Chris@10 113 }
Chris@10 114
Chris@10 115 /* In theory, transpose-recurse becomes advantageous for message sizes
Chris@10 116 below some minimum, assuming that the time is dominated by
Chris@10 117 communications. In practice, we want to constrain the minimum
Chris@10 118 message size for transpose-recurse to keep the planning time down.
Chris@10 119 I've set this conservatively according to some simple experiments
Chris@10 120 on a Cray XT3 where the crossover message size was 128, although on
Chris@10 121 a larger-latency machine the crossover will be larger. */
Chris@10 122 #define SMALL_MESSAGE 2048
Chris@10 123
Chris@10 124 static int applicable(const S *ego, const problem *p_,
Chris@10 125 const planner *plnr, int *r)
Chris@10 126 {
Chris@10 127 const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
Chris@10 128 int n_pes;
Chris@10 129 MPI_Comm_size(p->comm, &n_pes);
Chris@10 130 return (1
Chris@10 131 && p->tblock * n_pes == p->ny
Chris@10 132 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
Chris@10 133 && p->I != p->O))
Chris@10 134 && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1
Chris@10 135 && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes)
Chris@10 136 && (!CONSERVE_MEMORYP(plnr) || *r > 8
Chris@10 137 || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r))
Chris@10 138 && (!NO_SLOWP(plnr) ||
Chris@10 139 (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE)
Chris@10 140 && ONLY_TRANSPOSEDP(p->flags)
Chris@10 141 );
Chris@10 142 }
Chris@10 143
Chris@10 144 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 145 {
Chris@10 146 P *ego = (P *) ego_;
Chris@10 147 X(plan_awake)(ego->cld1, wakefulness);
Chris@10 148 X(plan_awake)(ego->cldtr, wakefulness);
Chris@10 149 X(plan_awake)(ego->cldtm, wakefulness);
Chris@10 150 }
Chris@10 151
Chris@10 152 static void destroy(plan *ego_)
Chris@10 153 {
Chris@10 154 P *ego = (P *) ego_;
Chris@10 155 X(plan_destroy_internal)(ego->cldtm);
Chris@10 156 X(plan_destroy_internal)(ego->cldtr);
Chris@10 157 X(plan_destroy_internal)(ego->cld1);
Chris@10 158 }
Chris@10 159
Chris@10 160 static void print(const plan *ego_, printer *p)
Chris@10 161 {
Chris@10 162 const P *ego = (const P *) ego_;
Chris@10 163 p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))",
Chris@10 164 ego->nam, ego->r, ego->preserve_input==2 ?"/p":"",
Chris@10 165 ego->cld1, ego->cldtr, ego->cldtm);
Chris@10 166 }
Chris@10 167
Chris@10 168 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 169 {
Chris@10 170 const S *ego = (const S *) ego_;
Chris@10 171 const problem_mpi_transpose *p;
Chris@10 172 P *pln;
Chris@10 173 plan *cld1 = 0, *cldtr = 0, *cldtm = 0;
Chris@10 174 R *I, *O;
Chris@10 175 int me, np, r, m;
Chris@10 176 INT b;
Chris@10 177 MPI_Comm comm2;
Chris@10 178 static const plan_adt padt = {
Chris@10 179 XM(transpose_solve), awake, print, destroy
Chris@10 180 };
Chris@10 181
Chris@10 182 UNUSED(ego);
Chris@10 183
Chris@10 184 if (!applicable(ego, p_, plnr, &r))
Chris@10 185 return (plan *) 0;
Chris@10 186
Chris@10 187 p = (const problem_mpi_transpose *) p_;
Chris@10 188
Chris@10 189 MPI_Comm_size(p->comm, &np);
Chris@10 190 MPI_Comm_rank(p->comm, &me);
Chris@10 191 m = np / r;
Chris@10 192 A(r * m == np);
Chris@10 193
Chris@10 194 I = p->I; O = p->O;
Chris@10 195
Chris@10 196 b = XM(block)(p->nx, p->block, me);
Chris@10 197 A(p->tblock * np == p->ny); /* this is currently required for cld1 */
Chris@10 198 if (p->flags & TRANSPOSED_IN) {
Chris@10 199 /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */
Chris@10 200 INT vn = p->vn * b * p->tblock;
Chris@10 201 cld1 = X(mkplan_f_d)(plnr,
Chris@10 202 X(mkproblem_rdft_0_d)(X(mktensor_3d)
Chris@10 203 (m, r*vn, vn,
Chris@10 204 r, vn, m*vn,
Chris@10 205 vn, 1, 1),
Chris@10 206 I, O),
Chris@10 207 0, 0, NO_SLOW);
Chris@10 208 }
Chris@10 209 else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */
Chris@10 210 /* b x m x r x bt x vn -> r x m x bt x b x vn */
Chris@10 211 INT vn = p->vn;
Chris@10 212 INT bt = p->tblock;
Chris@10 213 cld1 = X(mkplan_f_d)(plnr,
Chris@10 214 X(mkproblem_rdft_0_d)(X(mktensor_5d)
Chris@10 215 (b, m*r*bt*vn, vn,
Chris@10 216 m, r*bt*vn, bt*b*vn,
Chris@10 217 r, bt*vn, m*bt*b*vn,
Chris@10 218 bt, vn, b*vn,
Chris@10 219 vn, 1, 1),
Chris@10 220 I, O),
Chris@10 221 0, 0, NO_SLOW);
Chris@10 222 }
Chris@10 223 else { /* TRANSPOSED_IN permutation must be separate for in-place */
Chris@10 224 /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */
Chris@10 225 INT vn = p->vn * p->tblock;
Chris@10 226 cld1 = X(mkplan_f_d)(plnr,
Chris@10 227 X(mkproblem_rdft_0_d)(X(mktensor_4d)
Chris@10 228 (m, r*vn, vn,
Chris@10 229 r, vn, m*vn,
Chris@10 230 vn, 1, 1,
Chris@10 231 b, np*vn, np*vn),
Chris@10 232 I, O),
Chris@10 233 0, 0, NO_SLOW);
Chris@10 234 }
Chris@10 235 if (XM(any_true)(!cld1, p->comm)) goto nada;
Chris@10 236
Chris@10 237 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
Chris@10 238
Chris@10 239 b = XM(block)(p->nx, r * p->block, me / r);
Chris@10 240 MPI_Comm_split(p->comm, me / r, me, &comm2);
Chris@10 241 if (b)
Chris@10 242 cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose)
Chris@10 243 (b, p->ny, p->vn,
Chris@10 244 O, I, p->block, m * p->tblock, comm2,
Chris@10 245 p->I != p->O
Chris@10 246 ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN)));
Chris@10 247 MPI_Comm_free(&comm2);
Chris@10 248 if (XM(any_true)(b && !cldtr, p->comm)) goto nada;
Chris@10 249
Chris@10 250 b = XM(block)(p->ny, m * p->tblock, me % r);
Chris@10 251 MPI_Comm_split(p->comm, me % r, me, &comm2);
Chris@10 252 if (b)
Chris@10 253 cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose)
Chris@10 254 (p->nx, b, p->vn,
Chris@10 255 I, O, r * p->block, p->tblock, comm2,
Chris@10 256 TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT)));
Chris@10 257 MPI_Comm_free(&comm2);
Chris@10 258 if (XM(any_true)(b && !cldtm, p->comm)) goto nada;
Chris@10 259
Chris@10 260 pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
Chris@10 261
Chris@10 262 pln->cld1 = cld1;
Chris@10 263 pln->cldtr = cldtr;
Chris@10 264 pln->cldtm = cldtm;
Chris@10 265 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
Chris@10 266 pln->r = r;
Chris@10 267 pln->nam = ego->nam;
Chris@10 268
Chris@10 269 pln->super.super.ops = cld1->ops;
Chris@10 270 if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops);
Chris@10 271 if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops);
Chris@10 272
Chris@10 273 return &(pln->super.super);
Chris@10 274
Chris@10 275 nada:
Chris@10 276 X(plan_destroy_internal)(cldtm);
Chris@10 277 X(plan_destroy_internal)(cldtr);
Chris@10 278 X(plan_destroy_internal)(cld1);
Chris@10 279 return (plan *) 0;
Chris@10 280 }
Chris@10 281
Chris@10 282 static solver *mksolver(int preserve_input,
Chris@10 283 int (*radix)(int np), const char *nam)
Chris@10 284 {
Chris@10 285 static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
Chris@10 286 S *slv = MKSOLVER(S, &sadt);
Chris@10 287 slv->preserve_input = preserve_input;
Chris@10 288 slv->radix = radix;
Chris@10 289 slv->nam = nam;
Chris@10 290 return &(slv->super);
Chris@10 291 }
Chris@10 292
Chris@10 293 void XM(transpose_recurse_register)(planner *p)
Chris@10 294 {
Chris@10 295 int preserve_input;
Chris@10 296 for (preserve_input = 0; preserve_input <= 1; ++preserve_input) {
Chris@10 297 REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt"));
Chris@10 298 REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first"));
Chris@10 299 }
Chris@10 300 }