annotate src/fftw-3.3.3/mpi/transpose-pairwise.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* Distributed transposes using a sequence of carefully scheduled
Chris@10 22 pairwise exchanges. This has the advantage that it can be done
Chris@10 23 in-place, or out-of-place while preserving the input, using buffer
Chris@10 24 space proportional to the local size divided by the number of
Chris@10 25 processes (i.e. to the total array size divided by the number of
Chris@10 26 processes squared). */
Chris@10 27
Chris@10 28 #include "mpi-transpose.h"
Chris@10 29 #include <string.h>
Chris@10 30
Chris@10 31 typedef struct {
Chris@10 32 solver super;
Chris@10 33 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
Chris@10 34 } S;
Chris@10 35
Chris@10 36 typedef struct {
Chris@10 37 plan_mpi_transpose super;
Chris@10 38
Chris@10 39 plan *cld1, *cld2, *cld2rest, *cld3;
Chris@10 40 INT rest_Ioff, rest_Ooff;
Chris@10 41
Chris@10 42 int n_pes, my_pe, *sched;
Chris@10 43 INT *send_block_sizes, *send_block_offsets;
Chris@10 44 INT *recv_block_sizes, *recv_block_offsets;
Chris@10 45 MPI_Comm comm;
Chris@10 46 int preserve_input;
Chris@10 47 } P;
Chris@10 48
Chris@10 49 static void transpose_chunks(int *sched, int n_pes, int my_pe,
Chris@10 50 INT *sbs, INT *sbo, INT *rbs, INT *rbo,
Chris@10 51 MPI_Comm comm,
Chris@10 52 R *I, R *O)
Chris@10 53 {
Chris@10 54 if (sched) {
Chris@10 55 int i;
Chris@10 56 MPI_Status status;
Chris@10 57
Chris@10 58 /* TODO: explore non-synchronous send/recv? */
Chris@10 59
Chris@10 60 if (I == O) {
Chris@10 61 R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS);
Chris@10 62
Chris@10 63 for (i = 0; i < n_pes; ++i) {
Chris@10 64 int pe = sched[i];
Chris@10 65 if (my_pe == pe) {
Chris@10 66 if (rbo[pe] != sbo[pe])
Chris@10 67 memmove(O + rbo[pe], O + sbo[pe],
Chris@10 68 sbs[pe] * sizeof(R));
Chris@10 69 }
Chris@10 70 else {
Chris@10 71 memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R));
Chris@10 72 MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE,
Chris@10 73 pe, (my_pe * n_pes + pe) & 0xffff,
Chris@10 74 O + rbo[pe], (int) (rbs[pe]),
Chris@10 75 FFTW_MPI_TYPE,
Chris@10 76 pe, (pe * n_pes + my_pe) & 0xffff,
Chris@10 77 comm, &status);
Chris@10 78 }
Chris@10 79 }
Chris@10 80
Chris@10 81 X(ifree)(buf);
Chris@10 82 }
Chris@10 83 else { /* I != O */
Chris@10 84 for (i = 0; i < n_pes; ++i) {
Chris@10 85 int pe = sched[i];
Chris@10 86 if (my_pe == pe)
Chris@10 87 memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R));
Chris@10 88 else
Chris@10 89 MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]),
Chris@10 90 FFTW_MPI_TYPE,
Chris@10 91 pe, (my_pe * n_pes + pe) & 0xffff,
Chris@10 92 O + rbo[pe], (int) (rbs[pe]),
Chris@10 93 FFTW_MPI_TYPE,
Chris@10 94 pe, (pe * n_pes + my_pe) & 0xffff,
Chris@10 95 comm, &status);
Chris@10 96 }
Chris@10 97 }
Chris@10 98 }
Chris@10 99 }
Chris@10 100
Chris@10 101 static void apply(const plan *ego_, R *I, R *O)
Chris@10 102 {
Chris@10 103 const P *ego = (const P *) ego_;
Chris@10 104 plan_rdft *cld1, *cld2, *cld2rest, *cld3;
Chris@10 105
Chris@10 106 /* transpose locally to get contiguous chunks */
Chris@10 107 cld1 = (plan_rdft *) ego->cld1;
Chris@10 108 if (cld1) {
Chris@10 109 cld1->apply(ego->cld1, I, O);
Chris@10 110
Chris@10 111 if (ego->preserve_input) I = O;
Chris@10 112
Chris@10 113 /* transpose chunks globally */
Chris@10 114 transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
Chris@10 115 ego->send_block_sizes, ego->send_block_offsets,
Chris@10 116 ego->recv_block_sizes, ego->recv_block_offsets,
Chris@10 117 ego->comm, O, I);
Chris@10 118 }
Chris@10 119 else if (ego->preserve_input) {
Chris@10 120 /* transpose chunks globally */
Chris@10 121 transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
Chris@10 122 ego->send_block_sizes, ego->send_block_offsets,
Chris@10 123 ego->recv_block_sizes, ego->recv_block_offsets,
Chris@10 124 ego->comm, I, O);
Chris@10 125
Chris@10 126 I = O;
Chris@10 127 }
Chris@10 128 else {
Chris@10 129 /* transpose chunks globally */
Chris@10 130 transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
Chris@10 131 ego->send_block_sizes, ego->send_block_offsets,
Chris@10 132 ego->recv_block_sizes, ego->recv_block_offsets,
Chris@10 133 ego->comm, I, I);
Chris@10 134 }
Chris@10 135
Chris@10 136 /* transpose locally, again, to get ordinary row-major;
Chris@10 137 this may take two transposes if the block sizes are unequal
Chris@10 138 (3 subplans, two of which operate on disjoint data) */
Chris@10 139 cld2 = (plan_rdft *) ego->cld2;
Chris@10 140 cld2->apply(ego->cld2, I, O);
Chris@10 141 cld2rest = (plan_rdft *) ego->cld2rest;
Chris@10 142 if (cld2rest) {
Chris@10 143 cld2rest->apply(ego->cld2rest,
Chris@10 144 I + ego->rest_Ioff, O + ego->rest_Ooff);
Chris@10 145 cld3 = (plan_rdft *) ego->cld3;
Chris@10 146 if (cld3)
Chris@10 147 cld3->apply(ego->cld3, O, O);
Chris@10 148 /* else TRANSPOSED_OUT is true and user wants O transposed */
Chris@10 149 }
Chris@10 150 }
Chris@10 151
Chris@10 152 static int applicable(const S *ego, const problem *p_,
Chris@10 153 const planner *plnr)
Chris@10 154 {
Chris@10 155 const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
Chris@10 156 /* Note: this is *not* UGLY for out-of-place, destroy-input plans;
Chris@10 157 the planner often prefers transpose-pairwise to transpose-alltoall,
Chris@10 158 at least with LAM MPI on my machine. */
Chris@10 159 return (1
Chris@10 160 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
Chris@10 161 && p->I != p->O))
Chris@10 162 && ONLY_TRANSPOSEDP(p->flags));
Chris@10 163 }
Chris@10 164
Chris@10 165 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 166 {
Chris@10 167 P *ego = (P *) ego_;
Chris@10 168 X(plan_awake)(ego->cld1, wakefulness);
Chris@10 169 X(plan_awake)(ego->cld2, wakefulness);
Chris@10 170 X(plan_awake)(ego->cld2rest, wakefulness);
Chris@10 171 X(plan_awake)(ego->cld3, wakefulness);
Chris@10 172 }
Chris@10 173
Chris@10 174 static void destroy(plan *ego_)
Chris@10 175 {
Chris@10 176 P *ego = (P *) ego_;
Chris@10 177 X(ifree0)(ego->sched);
Chris@10 178 X(ifree0)(ego->send_block_sizes);
Chris@10 179 MPI_Comm_free(&ego->comm);
Chris@10 180 X(plan_destroy_internal)(ego->cld3);
Chris@10 181 X(plan_destroy_internal)(ego->cld2rest);
Chris@10 182 X(plan_destroy_internal)(ego->cld2);
Chris@10 183 X(plan_destroy_internal)(ego->cld1);
Chris@10 184 }
Chris@10 185
Chris@10 186 static void print(const plan *ego_, printer *p)
Chris@10 187 {
Chris@10 188 const P *ego = (const P *) ego_;
Chris@10 189 p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))",
Chris@10 190 ego->preserve_input==2 ?"/p":"",
Chris@10 191 ego->cld1, ego->cld2, ego->cld2rest, ego->cld3);
Chris@10 192 }
Chris@10 193
Chris@10 194 /* Given a process which_pe and a number of processes npes, fills
Chris@10 195 the array sched[npes] with a sequence of processes to communicate
Chris@10 196 with for a deadlock-free, optimum-overlap all-to-all communication.
Chris@10 197 (All processes must call this routine to get their own schedules.)
Chris@10 198 The schedule can be re-ordered arbitrarily as long as all processes
Chris@10 199 apply the same permutation to their schedules.
Chris@10 200
Chris@10 201 The algorithm here is based upon the one described in:
Chris@10 202 J. A. M. Schreuder, "Constructing timetables for sport
Chris@10 203 competitions," Mathematical Programming Study 13, pp. 58-67 (1980).
Chris@10 204 In a sport competition, you have N teams and want every team to
Chris@10 205 play every other team in as short a time as possible (maximum overlap
Chris@10 206 between games). This timetabling problem is therefore identical
Chris@10 207 to that of an all-to-all communications problem. In our case, there
Chris@10 208 is one wrinkle: as part of the schedule, the process must do
Chris@10 209 some data transfer with itself (local data movement), analogous
Chris@10 210 to a requirement that each team "play itself" in addition to other
Chris@10 211 teams. With this wrinkle, it turns out that an optimal timetable
Chris@10 212 (N parallel games) can be constructed for any N, not just for even
Chris@10 213 N as in the original problem described by Schreuder.
Chris@10 214 */
Chris@10 215 static void fill1_comm_sched(int *sched, int which_pe, int npes)
Chris@10 216 {
Chris@10 217 int pe, i, n, s = 0;
Chris@10 218 A(which_pe >= 0 && which_pe < npes);
Chris@10 219 if (npes % 2 == 0) {
Chris@10 220 n = npes;
Chris@10 221 sched[s++] = which_pe;
Chris@10 222 }
Chris@10 223 else
Chris@10 224 n = npes + 1;
Chris@10 225 for (pe = 0; pe < n - 1; ++pe) {
Chris@10 226 if (npes % 2 == 0) {
Chris@10 227 if (pe == which_pe) sched[s++] = npes - 1;
Chris@10 228 else if (npes - 1 == which_pe) sched[s++] = pe;
Chris@10 229 }
Chris@10 230 else if (pe == which_pe) sched[s++] = pe;
Chris@10 231
Chris@10 232 if (pe != which_pe && which_pe < n - 1) {
Chris@10 233 i = (pe - which_pe + (n - 1)) % (n - 1);
Chris@10 234 if (i < n/2)
Chris@10 235 sched[s++] = (pe + i) % (n - 1);
Chris@10 236
Chris@10 237 i = (which_pe - pe + (n - 1)) % (n - 1);
Chris@10 238 if (i < n/2)
Chris@10 239 sched[s++] = (pe - i + (n - 1)) % (n - 1);
Chris@10 240 }
Chris@10 241 }
Chris@10 242 A(s == npes);
Chris@10 243 }
Chris@10 244
Chris@10 245 /* Sort the communication schedule sched for npes so that the schedule
Chris@10 246 on process sortpe is ascending or descending (!ascending). This is
Chris@10 247 necessary to allow in-place transposes when the problem does not
Chris@10 248 divide equally among the processes. In this case there is one
Chris@10 249 process where the incoming blocks are bigger/smaller than the
Chris@10 250 outgoing blocks and thus have to be received in
Chris@10 251 descending/ascending order, respectively, to avoid overwriting data
Chris@10 252 before it is sent. */
Chris@10 253 static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending)
Chris@10 254 {
Chris@10 255 int *sortsched, i;
Chris@10 256 sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER);
Chris@10 257 fill1_comm_sched(sortsched, sortpe, npes);
Chris@10 258 if (ascending)
Chris@10 259 for (i = 0; i < npes; ++i)
Chris@10 260 sortsched[npes + sortsched[i]] = sched[i];
Chris@10 261 else
Chris@10 262 for (i = 0; i < npes; ++i)
Chris@10 263 sortsched[2*npes - 1 - sortsched[i]] = sched[i];
Chris@10 264 for (i = 0; i < npes; ++i)
Chris@10 265 sched[i] = sortsched[npes + i];
Chris@10 266 X(ifree)(sortsched);
Chris@10 267 }
Chris@10 268
Chris@10 269 /* make the plans to do the post-MPI transpositions (shared with
Chris@10 270 transpose-alltoall) */
Chris@10 271 int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr,
Chris@10 272 R *I, R *O, int my_pe,
Chris@10 273 plan **cld2, plan **cld2rest, plan **cld3,
Chris@10 274 INT *rest_Ioff, INT *rest_Ooff)
Chris@10 275 {
Chris@10 276 INT vn = p->vn;
Chris@10 277 INT b = p->block;
Chris@10 278 INT bt = XM(block)(p->ny, p->tblock, my_pe);
Chris@10 279 INT nxb = p->nx / b; /* number of equal-sized blocks */
Chris@10 280 INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */
Chris@10 281
Chris@10 282 *cld2 = *cld2rest = *cld3 = NULL;
Chris@10 283 *rest_Ioff = *rest_Ooff = 0;
Chris@10 284
Chris@10 285 if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) {
Chris@10 286 INT nx = p->nx * vn;
Chris@10 287 b *= vn;
Chris@10 288 *cld2 = X(mkplan_f_d)(plnr,
Chris@10 289 X(mkproblem_rdft_0_d)(X(mktensor_3d)
Chris@10 290 (nxb, bt * b, b,
Chris@10 291 bt, b, nx,
Chris@10 292 b, 1, 1),
Chris@10 293 I, O),
Chris@10 294 0, 0, NO_SLOW);
Chris@10 295 if (!*cld2) goto nada;
Chris@10 296
Chris@10 297 if (nxr > 0) {
Chris@10 298 *rest_Ioff = nxb * bt * b;
Chris@10 299 *rest_Ooff = nxb * b;
Chris@10 300 b = nxr * vn;
Chris@10 301 *cld2rest = X(mkplan_f_d)(plnr,
Chris@10 302 X(mkproblem_rdft_0_d)(X(mktensor_2d)
Chris@10 303 (bt, b, nx,
Chris@10 304 b, 1, 1),
Chris@10 305 I + *rest_Ioff,
Chris@10 306 O + *rest_Ooff),
Chris@10 307 0, 0, NO_SLOW);
Chris@10 308 if (!*cld2rest) goto nada;
Chris@10 309 }
Chris@10 310 }
Chris@10 311 else {
Chris@10 312 *cld2 = X(mkplan_f_d)(plnr,
Chris@10 313 X(mkproblem_rdft_0_d)(
Chris@10 314 X(mktensor_4d)
Chris@10 315 (nxb, bt * b * vn, bt * b * vn,
Chris@10 316 bt, b * vn, vn,
Chris@10 317 b, vn, bt * vn,
Chris@10 318 vn, 1, 1),
Chris@10 319 I, O),
Chris@10 320 0, 0, NO_SLOW);
Chris@10 321 if (!*cld2) goto nada;
Chris@10 322
Chris@10 323 *rest_Ioff = *rest_Ooff = nxb * bt * b * vn;
Chris@10 324 *cld2rest = X(mkplan_f_d)(plnr,
Chris@10 325 X(mkproblem_rdft_0_d)(
Chris@10 326 X(mktensor_3d)
Chris@10 327 (bt, nxr * vn, vn,
Chris@10 328 nxr, vn, bt * vn,
Chris@10 329 vn, 1, 1),
Chris@10 330 I + *rest_Ioff, O + *rest_Ooff),
Chris@10 331 0, 0, NO_SLOW);
Chris@10 332 if (!*cld2rest) goto nada;
Chris@10 333
Chris@10 334 if (!(p->flags & TRANSPOSED_OUT)) {
Chris@10 335 *cld3 = X(mkplan_f_d)(plnr,
Chris@10 336 X(mkproblem_rdft_0_d)(
Chris@10 337 X(mktensor_3d)
Chris@10 338 (p->nx, bt * vn, vn,
Chris@10 339 bt, vn, p->nx * vn,
Chris@10 340 vn, 1, 1),
Chris@10 341 O, O),
Chris@10 342 0, 0, NO_SLOW);
Chris@10 343 if (!*cld3) goto nada;
Chris@10 344 }
Chris@10 345 }
Chris@10 346
Chris@10 347 return 1;
Chris@10 348
Chris@10 349 nada:
Chris@10 350 X(plan_destroy_internal)(*cld3);
Chris@10 351 X(plan_destroy_internal)(*cld2rest);
Chris@10 352 X(plan_destroy_internal)(*cld2);
Chris@10 353 return 0;
Chris@10 354 }
Chris@10 355
Chris@10 356 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 357 {
Chris@10 358 const S *ego = (const S *) ego_;
Chris@10 359 const problem_mpi_transpose *p;
Chris@10 360 P *pln;
Chris@10 361 plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0;
Chris@10 362 INT b, bt, vn, rest_Ioff, rest_Ooff;
Chris@10 363 INT *sbs, *sbo, *rbs, *rbo;
Chris@10 364 int pe, my_pe, n_pes, sort_pe = -1, ascending = 1;
Chris@10 365 R *I, *O;
Chris@10 366 static const plan_adt padt = {
Chris@10 367 XM(transpose_solve), awake, print, destroy
Chris@10 368 };
Chris@10 369
Chris@10 370 UNUSED(ego);
Chris@10 371
Chris@10 372 if (!applicable(ego, p_, plnr))
Chris@10 373 return (plan *) 0;
Chris@10 374
Chris@10 375 p = (const problem_mpi_transpose *) p_;
Chris@10 376 vn = p->vn;
Chris@10 377 I = p->I; O = p->O;
Chris@10 378
Chris@10 379 MPI_Comm_rank(p->comm, &my_pe);
Chris@10 380 MPI_Comm_size(p->comm, &n_pes);
Chris@10 381
Chris@10 382 b = XM(block)(p->nx, p->block, my_pe);
Chris@10 383
Chris@10 384 if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */
Chris@10 385 cld1 = X(mkplan_f_d)(plnr,
Chris@10 386 X(mkproblem_rdft_0_d)(X(mktensor_3d)
Chris@10 387 (b, p->ny * vn, vn,
Chris@10 388 p->ny, vn, b * vn,
Chris@10 389 vn, 1, 1),
Chris@10 390 I, O),
Chris@10 391 0, 0, NO_SLOW);
Chris@10 392 if (XM(any_true)(!cld1, p->comm)) goto nada;
Chris@10 393 }
Chris@10 394 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
Chris@10 395
Chris@10 396 if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe,
Chris@10 397 &cld2, &cld2rest, &cld3,
Chris@10 398 &rest_Ioff, &rest_Ooff),
Chris@10 399 p->comm)) goto nada;
Chris@10 400
Chris@10 401 pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
Chris@10 402
Chris@10 403 pln->cld1 = cld1;
Chris@10 404 pln->cld2 = cld2;
Chris@10 405 pln->cld2rest = cld2rest;
Chris@10 406 pln->rest_Ioff = rest_Ioff;
Chris@10 407 pln->rest_Ooff = rest_Ooff;
Chris@10 408 pln->cld3 = cld3;
Chris@10 409 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
Chris@10 410
Chris@10 411 MPI_Comm_dup(p->comm, &pln->comm);
Chris@10 412
Chris@10 413 n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block),
Chris@10 414 XM(num_blocks)(p->ny, p->tblock));
Chris@10 415
Chris@10 416 /* Compute sizes/offsets of blocks to exchange between processors */
Chris@10 417 sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS);
Chris@10 418 sbo = sbs + n_pes;
Chris@10 419 rbs = sbo + n_pes;
Chris@10 420 rbo = rbs + n_pes;
Chris@10 421 b = XM(block)(p->nx, p->block, my_pe);
Chris@10 422 bt = XM(block)(p->ny, p->tblock, my_pe);
Chris@10 423 for (pe = 0; pe < n_pes; ++pe) {
Chris@10 424 INT db, dbt; /* destination block sizes */
Chris@10 425 db = XM(block)(p->nx, p->block, pe);
Chris@10 426 dbt = XM(block)(p->ny, p->tblock, pe);
Chris@10 427
Chris@10 428 sbs[pe] = b * dbt * vn;
Chris@10 429 sbo[pe] = pe * (b * p->tblock) * vn;
Chris@10 430 rbs[pe] = db * bt * vn;
Chris@10 431 rbo[pe] = pe * (p->block * bt) * vn;
Chris@10 432
Chris@10 433 if (db * dbt > 0 && db * p->tblock != p->block * dbt) {
Chris@10 434 A(sort_pe == -1); /* only one process should need sorting */
Chris@10 435 sort_pe = pe;
Chris@10 436 ascending = db * p->tblock > p->block * dbt;
Chris@10 437 }
Chris@10 438 }
Chris@10 439 pln->n_pes = n_pes;
Chris@10 440 pln->my_pe = my_pe;
Chris@10 441 pln->send_block_sizes = sbs;
Chris@10 442 pln->send_block_offsets = sbo;
Chris@10 443 pln->recv_block_sizes = rbs;
Chris@10 444 pln->recv_block_offsets = rbo;
Chris@10 445
Chris@10 446 if (my_pe >= n_pes) {
Chris@10 447 pln->sched = 0; /* this process is not doing anything */
Chris@10 448 }
Chris@10 449 else {
Chris@10 450 pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS);
Chris@10 451 fill1_comm_sched(pln->sched, my_pe, n_pes);
Chris@10 452 if (sort_pe >= 0)
Chris@10 453 sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending);
Chris@10 454 }
Chris@10 455
Chris@10 456 X(ops_zero)(&pln->super.super.ops);
Chris@10 457 if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops);
Chris@10 458 if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops);
Chris@10 459 if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops);
Chris@10 460 if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops);
Chris@10 461 /* FIXME: should MPI operations be counted in "other" somehow? */
Chris@10 462
Chris@10 463 return &(pln->super.super);
Chris@10 464
Chris@10 465 nada:
Chris@10 466 X(plan_destroy_internal)(cld3);
Chris@10 467 X(plan_destroy_internal)(cld2rest);
Chris@10 468 X(plan_destroy_internal)(cld2);
Chris@10 469 X(plan_destroy_internal)(cld1);
Chris@10 470 return (plan *) 0;
Chris@10 471 }
Chris@10 472
Chris@10 473 static solver *mksolver(int preserve_input)
Chris@10 474 {
Chris@10 475 static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
Chris@10 476 S *slv = MKSOLVER(S, &sadt);
Chris@10 477 slv->preserve_input = preserve_input;
Chris@10 478 return &(slv->super);
Chris@10 479 }
Chris@10 480
Chris@10 481 void XM(transpose_pairwise_register)(planner *p)
Chris@10 482 {
Chris@10 483 int preserve_input;
Chris@10 484 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
Chris@10 485 REGISTER_SOLVER(p, mksolver(preserve_input));
Chris@10 486 }