annotate src/fftw-3.3.3/mpi/testsched.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 1999-2003, 2007-8 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /**********************************************************************/
Chris@10 22 /* This is a modified and combined version of the sched.c and
Chris@10 23 test_sched.c files shipped with FFTW 2, written to implement and
Chris@10 24 test various all-to-all communications scheduling patterns.
Chris@10 25
Chris@10 26 It is not used in FFTW 3, but I keep it around in case we ever want
Chris@10 27 to play with this again or to change algorithms. In particular, I
Chris@10 28 used it to implement and test the fill1_comm_sched routine in
Chris@10 29 transpose-pairwise.c, which allows us to create a schedule for one
Chris@10 30 process at a time and is much more compact than the FFTW 2 code.
Chris@10 31
Chris@10 32 Note that the scheduling algorithm is somewhat modified from that
Chris@10 33 of FFTW 2. Originally, I thought that one "stall" in the schedule
Chris@10 34 was unavoidable for odd numbers of processes, since this is the
Chris@10 35 case for the soccer-timetabling problem. However, because of the
Chris@10 36 self-communication step, we can use the self-communication to fill
Chris@10 37 in the stalls. (Thanks to Ralf Wildenhues for pointing this out.)
Chris@10 38 This greatly simplifies the process re-sorting algorithm. */
Chris@10 39
Chris@10 40 /**********************************************************************/
Chris@10 41
Chris@10 42 #include <stdio.h>
Chris@10 43 #include <stdlib.h>
Chris@10 44
Chris@10 45 /* This file contains routines to compute communications schedules for
Chris@10 46 all-to-all communications (complete exchanges) that are performed
Chris@10 47 in-place. (That is, the block that processor x sends to processor
Chris@10 48 y gets replaced on processor x by a block received from processor y.)
Chris@10 49
Chris@10 50 A schedule, int **sched, is a two-dimensional array where
Chris@10 51 sched[pe][i] is the processor that pe expects to exchange a message
Chris@10 52 with on the i-th step of the exchange. sched[pe][i] == -1 for the
Chris@10 53 i after the last exchange scheduled on pe.
Chris@10 54
Chris@10 55 Here, processors (pe's, for processing elements), are numbered from
Chris@10 56 0 to npes-1.
Chris@10 57
Chris@10 58 There are a couple of constraints that a schedule should satisfy
Chris@10 59 (besides the obvious one that every processor has to communicate
Chris@10 60 with every other processor exactly once).
Chris@10 61
Chris@10 62 * First, and most importantly, there must be no deadlocks.
Chris@10 63
Chris@10 64 * Second, we would like to overlap communications as much as possible,
Chris@10 65 so that all exchanges occur in parallel. It turns out that perfect
Chris@10 66 overlap is possible for all number of processes (npes).
Chris@10 67
Chris@10 68 It turns out that this scheduling problem is actually well-studied,
Chris@10 69 and good solutions are known. The problem is known as a
Chris@10 70 "time-tabling" problem, and is specifically the problem of
Chris@10 71 scheduling a sports competition (where n teams must compete exactly
Chris@10 72 once with every other team). The problem is discussed and
Chris@10 73 algorithms are presented in:
Chris@10 74
Chris@10 75 [1] J. A. M. Schreuder, "Constructing Timetables for Sport
Chris@10 76 Competitions," Mathematical Programming Study 13, pp. 58-67 (1980).
Chris@10 77
Chris@10 78 [2] A. Schaerf, "Scheduling Sport Tournaments using Constraint
Chris@10 79 Logic Programming," Proc. of 12th Europ. Conf. on
Chris@10 80 Artif. Intell. (ECAI-96), pp. 634-639 (Budapest 1996).
Chris@10 81 http://hermes.dis.uniromal.it/~aschaerf/publications.html
Chris@10 82
Chris@10 83 (These people actually impose a lot of additional constraints that
Chris@10 84 we don't care about, so they are solving harder problems. [1] gives
Chris@10 85 a simple enough algorithm for our purposes, though.)
Chris@10 86
Chris@10 87 In the timetabling problem, N teams can all play one another in N-1
Chris@10 88 steps if N is even, and N steps if N is odd. Here, however,
Chris@10 89 there is a "self-communication" step (a team must also "play itself")
Chris@10 90 and so we can always make an optimal N-step schedule regardless of N.
Chris@10 91
Chris@10 92 However, we have to do more: for a particular processor, the
Chris@10 93 communications schedule must be sorted in ascending or descending
Chris@10 94 order of processor index. (This is necessary so that the data
Chris@10 95 coming in for the transpose does not overwrite data that will be
Chris@10 96 sent later; for that processor the incoming and outgoing blocks are
Chris@10 97 of different non-zero sizes.) Fortunately, because the schedule
Chris@10 98 is stall free, each parallel step of the schedule is independent
Chris@10 99 of every other step, and we can reorder the steps arbitrarily
Chris@10 100 to achieve any desired order on a particular process.
Chris@10 101 */
Chris@10 102
Chris@10 103 void free_comm_schedule(int **sched, int npes)
Chris@10 104 {
Chris@10 105 if (sched) {
Chris@10 106 int i;
Chris@10 107
Chris@10 108 for (i = 0; i < npes; ++i)
Chris@10 109 free(sched[i]);
Chris@10 110 free(sched);
Chris@10 111 }
Chris@10 112 }
Chris@10 113
Chris@10 114 void empty_comm_schedule(int **sched, int npes)
Chris@10 115 {
Chris@10 116 int i;
Chris@10 117 for (i = 0; i < npes; ++i)
Chris@10 118 sched[i][0] = -1;
Chris@10 119 }
Chris@10 120
Chris@10 121 extern void fill_comm_schedule(int **sched, int npes);
Chris@10 122
Chris@10 123 /* Create a new communications schedule for a given number of processors.
Chris@10 124 The schedule is initialized to a deadlock-free, maximum overlap
Chris@10 125 schedule. Returns NULL on an error (may print a message to
Chris@10 126 stderr if there is a program bug detected). */
Chris@10 127 int **make_comm_schedule(int npes)
Chris@10 128 {
Chris@10 129 int **sched;
Chris@10 130 int i;
Chris@10 131
Chris@10 132 sched = (int **) malloc(sizeof(int *) * npes);
Chris@10 133 if (!sched)
Chris@10 134 return NULL;
Chris@10 135
Chris@10 136 for (i = 0; i < npes; ++i)
Chris@10 137 sched[i] = NULL;
Chris@10 138
Chris@10 139 for (i = 0; i < npes; ++i) {
Chris@10 140 sched[i] = (int *) malloc(sizeof(int) * 10 * (npes + 1));
Chris@10 141 if (!sched[i]) {
Chris@10 142 free_comm_schedule(sched,npes);
Chris@10 143 return NULL;
Chris@10 144 }
Chris@10 145 }
Chris@10 146
Chris@10 147 empty_comm_schedule(sched,npes);
Chris@10 148 fill_comm_schedule(sched,npes);
Chris@10 149
Chris@10 150 if (!check_comm_schedule(sched,npes)) {
Chris@10 151 free_comm_schedule(sched,npes);
Chris@10 152 return NULL;
Chris@10 153 }
Chris@10 154
Chris@10 155 return sched;
Chris@10 156 }
Chris@10 157
Chris@10 158 static void add_dest_to_comm_schedule(int **sched, int pe, int dest)
Chris@10 159 {
Chris@10 160 int i;
Chris@10 161
Chris@10 162 for (i = 0; sched[pe][i] != -1; ++i)
Chris@10 163 ;
Chris@10 164
Chris@10 165 sched[pe][i] = dest;
Chris@10 166 sched[pe][i+1] = -1;
Chris@10 167 }
Chris@10 168
Chris@10 169 static void add_pair_to_comm_schedule(int **sched, int pe1, int pe2)
Chris@10 170 {
Chris@10 171 add_dest_to_comm_schedule(sched, pe1, pe2);
Chris@10 172 if (pe1 != pe2)
Chris@10 173 add_dest_to_comm_schedule(sched, pe2, pe1);
Chris@10 174 }
Chris@10 175
Chris@10 176 /* Simplification of algorithm presented in [1] (we have fewer
Chris@10 177 constraints). Produces a perfect schedule (npes steps). */
Chris@10 178
Chris@10 179 void fill_comm_schedule(int **sched, int npes)
Chris@10 180 {
Chris@10 181 int pe, i, n;
Chris@10 182
Chris@10 183 if (npes % 2 == 0) {
Chris@10 184 n = npes;
Chris@10 185 for (pe = 0; pe < npes; ++pe)
Chris@10 186 add_pair_to_comm_schedule(sched,pe,pe);
Chris@10 187 }
Chris@10 188 else
Chris@10 189 n = npes + 1;
Chris@10 190
Chris@10 191 for (pe = 0; pe < n - 1; ++pe) {
Chris@10 192 add_pair_to_comm_schedule(sched, pe, npes % 2 == 0 ? npes - 1 : pe);
Chris@10 193
Chris@10 194 for (i = 1; i < n/2; ++i) {
Chris@10 195 int pe_a, pe_b;
Chris@10 196
Chris@10 197 pe_a = pe - i;
Chris@10 198 if (pe_a < 0)
Chris@10 199 pe_a += n - 1;
Chris@10 200
Chris@10 201 pe_b = (pe + i) % (n - 1);
Chris@10 202
Chris@10 203 add_pair_to_comm_schedule(sched,pe_a,pe_b);
Chris@10 204 }
Chris@10 205 }
Chris@10 206 }
Chris@10 207
Chris@10 208 /* given an array sched[npes], fills it with the communications
Chris@10 209 schedule for process pe. */
Chris@10 210 void fill1_comm_sched(int *sched, int which_pe, int npes)
Chris@10 211 {
Chris@10 212 int pe, i, n, s = 0;
Chris@10 213 if (npes % 2 == 0) {
Chris@10 214 n = npes;
Chris@10 215 sched[s++] = which_pe;
Chris@10 216 }
Chris@10 217 else
Chris@10 218 n = npes + 1;
Chris@10 219 for (pe = 0; pe < n - 1; ++pe) {
Chris@10 220 if (npes % 2 == 0) {
Chris@10 221 if (pe == which_pe) sched[s++] = npes - 1;
Chris@10 222 else if (npes - 1 == which_pe) sched[s++] = pe;
Chris@10 223 }
Chris@10 224 else if (pe == which_pe) sched[s++] = pe;
Chris@10 225
Chris@10 226 if (pe != which_pe && which_pe < n - 1) {
Chris@10 227 i = (pe - which_pe + (n - 1)) % (n - 1);
Chris@10 228 if (i < n/2)
Chris@10 229 sched[s++] = (pe + i) % (n - 1);
Chris@10 230
Chris@10 231 i = (which_pe - pe + (n - 1)) % (n - 1);
Chris@10 232 if (i < n/2)
Chris@10 233 sched[s++] = (pe - i + (n - 1)) % (n - 1);
Chris@10 234 }
Chris@10 235 }
Chris@10 236 if (s != npes) {
Chris@10 237 fprintf(stderr, "bug in fill1_com_schedule (%d, %d/%d)\n",
Chris@10 238 s, which_pe, npes);
Chris@10 239 exit(EXIT_FAILURE);
Chris@10 240 }
Chris@10 241 }
Chris@10 242
Chris@10 243 /* sort the communication schedule sched for npes so that the schedule
Chris@10 244 on process sortpe is ascending or descending (!ascending). */
Chris@10 245 static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending)
Chris@10 246 {
Chris@10 247 int *sortsched, i;
Chris@10 248 sortsched = (int *) malloc(npes * sizeof(int) * 2);
Chris@10 249 fill1_comm_sched(sortsched, sortpe, npes);
Chris@10 250 if (ascending)
Chris@10 251 for (i = 0; i < npes; ++i)
Chris@10 252 sortsched[npes + sortsched[i]] = sched[i];
Chris@10 253 else
Chris@10 254 for (i = 0; i < npes; ++i)
Chris@10 255 sortsched[2*npes - 1 - sortsched[i]] = sched[i];
Chris@10 256 for (i = 0; i < npes; ++i)
Chris@10 257 sched[i] = sortsched[npes + i];
Chris@10 258 free(sortsched);
Chris@10 259 }
Chris@10 260
Chris@10 261 /* Below, we have various checks in case of bugs: */
Chris@10 262
Chris@10 263 /* check for deadlocks by simulating the schedule and looking for
Chris@10 264 cycles in the dependency list; returns 0 if there are deadlocks
Chris@10 265 (or other errors) */
Chris@10 266 static int check_schedule_deadlock(int **sched, int npes)
Chris@10 267 {
Chris@10 268 int *step, *depend, *visited, pe, pe2, period, done = 0;
Chris@10 269 int counter = 0;
Chris@10 270
Chris@10 271 /* step[pe] is the step in the schedule that a given pe is on */
Chris@10 272 step = (int *) malloc(sizeof(int) * npes);
Chris@10 273
Chris@10 274 /* depend[pe] is the pe' that pe is currently waiting for a message
Chris@10 275 from (-1 if none) */
Chris@10 276 depend = (int *) malloc(sizeof(int) * npes);
Chris@10 277
Chris@10 278 /* visited[pe] tells whether we have visited the current pe already
Chris@10 279 when we are looking for cycles. */
Chris@10 280 visited = (int *) malloc(sizeof(int) * npes);
Chris@10 281
Chris@10 282 if (!step || !depend || !visited) {
Chris@10 283 free(step); free(depend); free(visited);
Chris@10 284 return 0;
Chris@10 285 }
Chris@10 286
Chris@10 287 for (pe = 0; pe < npes; ++pe)
Chris@10 288 step[pe] = 0;
Chris@10 289
Chris@10 290 while (!done) {
Chris@10 291 ++counter;
Chris@10 292
Chris@10 293 for (pe = 0; pe < npes; ++pe)
Chris@10 294 depend[pe] = sched[pe][step[pe]];
Chris@10 295
Chris@10 296 /* now look for cycles in the dependencies with period > 2: */
Chris@10 297 for (pe = 0; pe < npes; ++pe)
Chris@10 298 if (depend[pe] != -1) {
Chris@10 299 for (pe2 = 0; pe2 < npes; ++pe2)
Chris@10 300 visited[pe2] = 0;
Chris@10 301
Chris@10 302 period = 0;
Chris@10 303 pe2 = pe;
Chris@10 304 do {
Chris@10 305 visited[pe2] = period + 1;
Chris@10 306 pe2 = depend[pe2];
Chris@10 307 period++;
Chris@10 308 } while (pe2 != -1 && !visited[pe2]);
Chris@10 309
Chris@10 310 if (pe2 == -1) {
Chris@10 311 fprintf(stderr,
Chris@10 312 "BUG: unterminated cycle in schedule!\n");
Chris@10 313 free(step); free(depend);
Chris@10 314 free(visited);
Chris@10 315 return 0;
Chris@10 316 }
Chris@10 317 if (period - (visited[pe2] - 1) > 2) {
Chris@10 318 fprintf(stderr,"BUG: deadlock in schedule!\n");
Chris@10 319 free(step); free(depend);
Chris@10 320 free(visited);
Chris@10 321 return 0;
Chris@10 322 }
Chris@10 323
Chris@10 324 if (pe2 == pe)
Chris@10 325 step[pe]++;
Chris@10 326 }
Chris@10 327
Chris@10 328 done = 1;
Chris@10 329 for (pe = 0; pe < npes; ++pe)
Chris@10 330 if (sched[pe][step[pe]] != -1) {
Chris@10 331 done = 0;
Chris@10 332 break;
Chris@10 333 }
Chris@10 334 }
Chris@10 335
Chris@10 336 free(step); free(depend); free(visited);
Chris@10 337 return (counter > 0 ? counter : 1);
Chris@10 338 }
Chris@10 339
Chris@10 340 /* sanity checks; prints message and returns 0 on failure.
Chris@10 341 undocumented feature: the return value on success is actually the
Chris@10 342 number of steps required for the schedule to complete, counting
Chris@10 343 stalls. */
Chris@10 344 int check_comm_schedule(int **sched, int npes)
Chris@10 345 {
Chris@10 346 int pe, i, comm_pe;
Chris@10 347
Chris@10 348 for (pe = 0; pe < npes; ++pe) {
Chris@10 349 for (comm_pe = 0; comm_pe < npes; ++comm_pe) {
Chris@10 350 for (i = 0; sched[pe][i] != -1 && sched[pe][i] != comm_pe; ++i)
Chris@10 351 ;
Chris@10 352 if (sched[pe][i] == -1) {
Chris@10 353 fprintf(stderr,"BUG: schedule never sends message from "
Chris@10 354 "%d to %d.\n",pe,comm_pe);
Chris@10 355 return 0; /* never send message to comm_pe */
Chris@10 356 }
Chris@10 357 }
Chris@10 358 for (i = 0; sched[pe][i] != -1; ++i)
Chris@10 359 ;
Chris@10 360 if (i != npes) {
Chris@10 361 fprintf(stderr,"BUG: schedule sends too many messages from "
Chris@10 362 "%d\n",pe);
Chris@10 363 return 0;
Chris@10 364 }
Chris@10 365 }
Chris@10 366 return check_schedule_deadlock(sched,npes);
Chris@10 367 }
Chris@10 368
Chris@10 369 /* invert the order of all the schedules; this has no effect on
Chris@10 370 its required properties. */
Chris@10 371 void invert_comm_schedule(int **sched, int npes)
Chris@10 372 {
Chris@10 373 int pe, i;
Chris@10 374
Chris@10 375 for (pe = 0; pe < npes; ++pe)
Chris@10 376 for (i = 0; i < npes/2; ++i) {
Chris@10 377 int dummy = sched[pe][i];
Chris@10 378 sched[pe][i] = sched[pe][npes-1-i];
Chris@10 379 sched[pe][npes-1-i] = dummy;
Chris@10 380 }
Chris@10 381 }
Chris@10 382
Chris@10 383 /* Sort the schedule for sort_pe in ascending order of processor
Chris@10 384 index. Unfortunately, for odd npes (when schedule has a stall
Chris@10 385 to begin with) this will introduce an extra stall due to
Chris@10 386 the motion of the self-communication past a stall. We could
Chris@10 387 fix this if it were really important. Actually, we don't
Chris@10 388 get an extra stall when sort_pe == 0 or npes-1, which is sufficient
Chris@10 389 for our purposes. */
Chris@10 390 void sort_comm_schedule(int **sched, int npes, int sort_pe)
Chris@10 391 {
Chris@10 392 int i,j,pe;
Chris@10 393
Chris@10 394 /* Note that we can do this sort in O(npes) swaps because we know
Chris@10 395 that the numbers we are sorting are just 0...npes-1. But we'll
Chris@10 396 just do a bubble sort for simplicity here. */
Chris@10 397
Chris@10 398 for (i = 0; i < npes - 1; ++i)
Chris@10 399 for (j = i + 1; j < npes; ++j)
Chris@10 400 if (sched[sort_pe][i] > sched[sort_pe][j]) {
Chris@10 401 for (pe = 0; pe < npes; ++pe) {
Chris@10 402 int s = sched[pe][i];
Chris@10 403 sched[pe][i] = sched[pe][j];
Chris@10 404 sched[pe][j] = s;
Chris@10 405 }
Chris@10 406 }
Chris@10 407 }
Chris@10 408
Chris@10 409 /* print the schedule (for debugging purposes) */
Chris@10 410 void print_comm_schedule(int **sched, int npes)
Chris@10 411 {
Chris@10 412 int pe, i, width;
Chris@10 413
Chris@10 414 if (npes < 10)
Chris@10 415 width = 1;
Chris@10 416 else if (npes < 100)
Chris@10 417 width = 2;
Chris@10 418 else
Chris@10 419 width = 3;
Chris@10 420
Chris@10 421 for (pe = 0; pe < npes; ++pe) {
Chris@10 422 printf("pe %*d schedule:", width, pe);
Chris@10 423 for (i = 0; sched[pe][i] != -1; ++i)
Chris@10 424 printf(" %*d",width,sched[pe][i]);
Chris@10 425 printf("\n");
Chris@10 426 }
Chris@10 427 }
Chris@10 428
Chris@10 429 int main(int argc, char **argv)
Chris@10 430 {
Chris@10 431 int **sched;
Chris@10 432 int npes = -1, sortpe = -1, steps, i;
Chris@10 433
Chris@10 434 if (argc >= 2) {
Chris@10 435 npes = atoi(argv[1]);
Chris@10 436 if (npes <= 0) {
Chris@10 437 fprintf(stderr,"npes must be positive!");
Chris@10 438 return 1;
Chris@10 439 }
Chris@10 440 }
Chris@10 441 if (argc >= 3) {
Chris@10 442 sortpe = atoi(argv[2]);
Chris@10 443 if (sortpe < 0 || sortpe >= npes) {
Chris@10 444 fprintf(stderr,"sortpe must be between 0 and npes-1.\n");
Chris@10 445 return 1;
Chris@10 446 }
Chris@10 447 }
Chris@10 448
Chris@10 449 if (npes != -1) {
Chris@10 450 printf("Computing schedule for npes = %d:\n",npes);
Chris@10 451 sched = make_comm_schedule(npes);
Chris@10 452 if (!sched) {
Chris@10 453 fprintf(stderr,"Out of memory!");
Chris@10 454 return 6;
Chris@10 455 }
Chris@10 456
Chris@10 457 if (steps = check_comm_schedule(sched,npes))
Chris@10 458 printf("schedule OK (takes %d steps to complete).\n", steps);
Chris@10 459 else
Chris@10 460 printf("schedule not OK.\n");
Chris@10 461
Chris@10 462 print_comm_schedule(sched, npes);
Chris@10 463
Chris@10 464 if (sortpe != -1) {
Chris@10 465 printf("\nRe-creating schedule for pe = %d...\n", sortpe);
Chris@10 466 int *sched1 = (int*) malloc(sizeof(int) * npes);
Chris@10 467 for (i = 0; i < npes; ++i) sched1[i] = -1;
Chris@10 468 fill1_comm_sched(sched1, sortpe, npes);
Chris@10 469 printf(" =");
Chris@10 470 for (i = 0; i < npes; ++i)
Chris@10 471 printf(" %*d", npes < 10 ? 1 : (npes < 100 ? 2 : 3),
Chris@10 472 sched1[i]);
Chris@10 473 printf("\n");
Chris@10 474
Chris@10 475 printf("\nSorting schedule for sortpe = %d...\n", sortpe);
Chris@10 476 sort_comm_schedule(sched,npes,sortpe);
Chris@10 477
Chris@10 478 if (steps = check_comm_schedule(sched,npes))
Chris@10 479 printf("schedule OK (takes %d steps to complete).\n",
Chris@10 480 steps);
Chris@10 481 else
Chris@10 482 printf("schedule not OK.\n");
Chris@10 483
Chris@10 484 print_comm_schedule(sched, npes);
Chris@10 485
Chris@10 486 printf("\nInverting schedule...\n");
Chris@10 487 invert_comm_schedule(sched,npes);
Chris@10 488
Chris@10 489 if (steps = check_comm_schedule(sched,npes))
Chris@10 490 printf("schedule OK (takes %d steps to complete).\n",
Chris@10 491 steps);
Chris@10 492 else
Chris@10 493 printf("schedule not OK.\n");
Chris@10 494
Chris@10 495 print_comm_schedule(sched, npes);
Chris@10 496
Chris@10 497 free_comm_schedule(sched,npes);
Chris@10 498
Chris@10 499 free(sched1);
Chris@10 500 }
Chris@10 501 }
Chris@10 502 else {
Chris@10 503 printf("Doing infinite tests...\n");
Chris@10 504 for (npes = 1; ; ++npes) {
Chris@10 505 int *sched1 = (int*) malloc(sizeof(int) * npes);
Chris@10 506 printf("npes = %d...",npes);
Chris@10 507 sched = make_comm_schedule(npes);
Chris@10 508 if (!sched) {
Chris@10 509 fprintf(stderr,"Out of memory!\n");
Chris@10 510 return 5;
Chris@10 511 }
Chris@10 512 for (sortpe = 0; sortpe < npes; ++sortpe) {
Chris@10 513 empty_comm_schedule(sched,npes);
Chris@10 514 fill_comm_schedule(sched,npes);
Chris@10 515 if (!check_comm_schedule(sched,npes)) {
Chris@10 516 fprintf(stderr,
Chris@10 517 "\n -- fill error for sortpe = %d!\n",sortpe);
Chris@10 518 return 2;
Chris@10 519 }
Chris@10 520
Chris@10 521 for (i = 0; i < npes; ++i) sched1[i] = -1;
Chris@10 522 fill1_comm_sched(sched1, sortpe, npes);
Chris@10 523 for (i = 0; i < npes; ++i)
Chris@10 524 if (sched1[i] != sched[sortpe][i])
Chris@10 525 fprintf(stderr,
Chris@10 526 "\n -- fill1 error for pe = %d!\n",
Chris@10 527 sortpe);
Chris@10 528
Chris@10 529 sort_comm_schedule(sched,npes,sortpe);
Chris@10 530 if (!check_comm_schedule(sched,npes)) {
Chris@10 531 fprintf(stderr,
Chris@10 532 "\n -- sort error for sortpe = %d!\n",sortpe);
Chris@10 533 return 3;
Chris@10 534 }
Chris@10 535 invert_comm_schedule(sched,npes);
Chris@10 536 if (!check_comm_schedule(sched,npes)) {
Chris@10 537 fprintf(stderr,
Chris@10 538 "\n -- invert error for sortpe = %d!\n",
Chris@10 539 sortpe);
Chris@10 540 return 4;
Chris@10 541 }
Chris@10 542 }
Chris@10 543 free_comm_schedule(sched,npes);
Chris@10 544 printf("OK\n");
Chris@10 545 if (npes % 50 == 0)
Chris@10 546 printf("(...Hit Ctrl-C to stop...)\n");
Chris@10 547 free(sched1);
Chris@10 548 }
Chris@10 549 }
Chris@10 550
Chris@10 551 return 0;
Chris@10 552 }