annotate src/fftw-3.3.3/mpi/dft-rank1.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* Complex DFTs of rank == 1 via six-step algorithm. */
Chris@10 22
Chris@10 23 #include "mpi-dft.h"
Chris@10 24 #include "mpi-transpose.h"
Chris@10 25 #include "dft.h"
Chris@10 26
Chris@10 27 typedef struct {
Chris@10 28 solver super;
Chris@10 29 rdftapply apply; /* apply_ddft_first or apply_ddft_last */
Chris@10 30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
Chris@10 31 } S;
Chris@10 32
Chris@10 33 typedef struct {
Chris@10 34 plan_mpi_dft super;
Chris@10 35
Chris@10 36 triggen *t;
Chris@10 37 plan *cldt, *cld_ddft, *cld_dft;
Chris@10 38 INT roff, ioff;
Chris@10 39 int preserve_input;
Chris@10 40 INT vn, xmin, xmax, xs, m, r;
Chris@10 41 } P;
Chris@10 42
Chris@10 43 static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
Chris@10 44 {
Chris@10 45 void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
Chris@10 46 INT im, iv;
Chris@10 47 for (im = 0; im < m; ++im)
Chris@10 48 for (iv = 0; iv < vn; ++iv) {
Chris@10 49 /* TODO: modify/inline rotate function
Chris@10 50 so that it can do whole vn vector at once? */
Chris@10 51 R c[2];
Chris@10 52 rotate(t, ir * im, *xr, *xi, c);
Chris@10 53 *xr = c[0]; *xi = c[1];
Chris@10 54 xr += 2; xi += 2;
Chris@10 55 }
Chris@10 56 }
Chris@10 57
Chris@10 58 /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
Chris@10 59 plus twiddle factors between the size-m and size-r 1d DFTs, where
Chris@10 60 the m dimension is initially distributed. The output is transposed
Chris@10 61 to r x m where the r dimension is distributed.
Chris@10 62
Chris@10 63 This algorithm follows the general sequence:
Chris@10 64 global transpose (m x r -> r x m)
Chris@10 65 DFTs of size m
Chris@10 66 multiply by twiddles + global transpose (r x m -> m x r)
Chris@10 67 DFTs of size r
Chris@10 68 global transpose (m x r -> r x m)
Chris@10 69 where the multiplication by twiddles can come before or after
Chris@10 70 the middle transpose. The first/last transposes are omitted
Chris@10 71 for SCRAMBLED_IN/OUT formats, respectively.
Chris@10 72
Chris@10 73 However, we wish to exploit our dft-rank1-bigvec solver, which
Chris@10 74 solves a vector of distributed DFTs via transpose+dft+transpose.
Chris@10 75 Therefore, we can group *either* the DFTs of size m *or* the
Chris@10 76 DFTs of size r with their surrounding transposes as a single
Chris@10 77 distributed-DFT (ddft) plan. These two variations correspond to
Chris@10 78 apply_ddft_first or apply_ddft_last, respectively.
Chris@10 79 */
Chris@10 80
Chris@10 81 static void apply_ddft_first(const plan *ego_, R *I, R *O)
Chris@10 82 {
Chris@10 83 const P *ego = (const P *) ego_;
Chris@10 84 plan_dft *cld_dft;
Chris@10 85 plan_rdft *cldt, *cld_ddft;
Chris@10 86 INT roff, ioff, im, mmax, ms, r, vn;
Chris@10 87 triggen *t;
Chris@10 88 R *dI, *dO;
Chris@10 89
Chris@10 90 /* distributed size-m DFTs, with output in m x r format */
Chris@10 91 cld_ddft = (plan_rdft *) ego->cld_ddft;
Chris@10 92 cld_ddft->apply(ego->cld_ddft, I, O);
Chris@10 93
Chris@10 94 cldt = (plan_rdft *) ego->cldt;
Chris@10 95 if (ego->preserve_input || !cldt) I = O;
Chris@10 96
Chris@10 97 /* twiddle multiplications, followed by 1d DFTs of size-r */
Chris@10 98 cld_dft = (plan_dft *) ego->cld_dft;
Chris@10 99 roff = ego->roff; ioff = ego->ioff;
Chris@10 100 mmax = ego->xmax; ms = ego->xs;
Chris@10 101 t = ego->t; r = ego->r; vn = ego->vn;
Chris@10 102 dI = O; dO = I;
Chris@10 103 for (im = ego->xmin; im <= mmax; ++im) {
Chris@10 104 do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
Chris@10 105 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
Chris@10 106 dI += ms; dO += ms;
Chris@10 107 }
Chris@10 108
Chris@10 109 /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
Chris@10 110 if (cldt)
Chris@10 111 cldt->apply((plan *) cldt, I, O);
Chris@10 112 }
Chris@10 113
Chris@10 114 static void apply_ddft_last(const plan *ego_, R *I, R *O)
Chris@10 115 {
Chris@10 116 const P *ego = (const P *) ego_;
Chris@10 117 plan_dft *cld_dft;
Chris@10 118 plan_rdft *cldt, *cld_ddft;
Chris@10 119 INT roff, ioff, ir, rmax, rs, m, vn;
Chris@10 120 triggen *t;
Chris@10 121 R *dI, *dO0, *dO;
Chris@10 122
Chris@10 123 /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
Chris@10 124 cldt = (plan_rdft *) ego->cldt;
Chris@10 125 if (cldt) {
Chris@10 126 cldt->apply((plan *) cldt, I, O);
Chris@10 127 dI = O;
Chris@10 128 }
Chris@10 129 else
Chris@10 130 dI = I;
Chris@10 131 if (ego->preserve_input) dO = O; else dO = I;
Chris@10 132 dO0 = dO;
Chris@10 133
Chris@10 134 /* 1d DFTs of size m, followed by twiddle multiplications */
Chris@10 135 cld_dft = (plan_dft *) ego->cld_dft;
Chris@10 136 roff = ego->roff; ioff = ego->ioff;
Chris@10 137 rmax = ego->xmax; rs = ego->xs;
Chris@10 138 t = ego->t; m = ego->m; vn = ego->vn;
Chris@10 139 for (ir = ego->xmin; ir <= rmax; ++ir) {
Chris@10 140 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
Chris@10 141 do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
Chris@10 142 dI += rs; dO += rs;
Chris@10 143 }
Chris@10 144
Chris@10 145 /* distributed size-r DFTs, with output in r x m format */
Chris@10 146 cld_ddft = (plan_rdft *) ego->cld_ddft;
Chris@10 147 cld_ddft->apply(ego->cld_ddft, dO0, O);
Chris@10 148 }
Chris@10 149
Chris@10 150 static int applicable(const S *ego, const problem *p_,
Chris@10 151 const planner *plnr,
Chris@10 152 INT *r, INT rblock[2], INT mblock[2])
Chris@10 153 {
Chris@10 154 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
Chris@10 155 int n_pes;
Chris@10 156 MPI_Comm_size(p->comm, &n_pes);
Chris@10 157 return (1
Chris@10 158 && p->sz->rnk == 1
Chris@10 159
Chris@10 160 && ONLY_SCRAMBLEDP(p->flags)
Chris@10 161
Chris@10 162 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
Chris@10 163 && p->I != p->O))
Chris@10 164
Chris@10 165 && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
Chris@10 166 && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
Chris@10 167
Chris@10 168 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
Chris@10 169 || !XM(dft_serial_applicable)(p))
Chris@10 170
Chris@10 171 /* disallow if dft-rank1-bigvec is applicable since the
Chris@10 172 data distribution may be slightly different (ugh!) */
Chris@10 173 && (p->vn < n_pes || p->flags)
Chris@10 174
Chris@10 175 && (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
Chris@10 176 p->flags, p->sign,
Chris@10 177 rblock, mblock))
Chris@10 178
Chris@10 179 /* ddft_first or last has substantial advantages in the
Chris@10 180 bigvec transpositions for the common case where
Chris@10 181 n_pes == n/r or r, respectively */
Chris@10 182 && (!NO_UGLYP(plnr)
Chris@10 183 || !(*r == n_pes && ego->apply == apply_ddft_first)
Chris@10 184 || !(p->sz->dims[0].n / *r == n_pes
Chris@10 185 && ego->apply == apply_ddft_last))
Chris@10 186 );
Chris@10 187 }
Chris@10 188
Chris@10 189 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 190 {
Chris@10 191 P *ego = (P *) ego_;
Chris@10 192 X(plan_awake)(ego->cldt, wakefulness);
Chris@10 193 X(plan_awake)(ego->cld_dft, wakefulness);
Chris@10 194 X(plan_awake)(ego->cld_ddft, wakefulness);
Chris@10 195
Chris@10 196 switch (wakefulness) {
Chris@10 197 case SLEEPY:
Chris@10 198 X(triggen_destroy)(ego->t); ego->t = 0;
Chris@10 199 break;
Chris@10 200 default:
Chris@10 201 ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
Chris@10 202 break;
Chris@10 203 }
Chris@10 204 }
Chris@10 205
Chris@10 206 static void destroy(plan *ego_)
Chris@10 207 {
Chris@10 208 P *ego = (P *) ego_;
Chris@10 209 X(plan_destroy_internal)(ego->cldt);
Chris@10 210 X(plan_destroy_internal)(ego->cld_dft);
Chris@10 211 X(plan_destroy_internal)(ego->cld_ddft);
Chris@10 212 }
Chris@10 213
Chris@10 214 static void print(const plan *ego_, printer *p)
Chris@10 215 {
Chris@10 216 const P *ego = (const P *) ego_;
Chris@10 217 p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
Chris@10 218 ego->r,
Chris@10 219 ego->super.apply == apply_ddft_first ? "/first" : "/last",
Chris@10 220 ego->preserve_input==2 ?"/p":"",
Chris@10 221 ego->cld_ddft, ego->cld_dft, ego->cldt);
Chris@10 222 }
Chris@10 223
Chris@10 224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 225 {
Chris@10 226 const S *ego = (const S *) ego_;
Chris@10 227 const problem_mpi_dft *p;
Chris@10 228 P *pln;
Chris@10 229 plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
Chris@10 230 R *ri, *ii, *ro, *io, *I, *O;
Chris@10 231 INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
Chris@10 232 int my_pe, n_pes, preserve_input, ddft_first;
Chris@10 233 dtensor *sz;
Chris@10 234 static const plan_adt padt = {
Chris@10 235 XM(dft_solve), awake, print, destroy
Chris@10 236 };
Chris@10 237
Chris@10 238 UNUSED(ego);
Chris@10 239
Chris@10 240 if (!applicable(ego, p_, plnr, &r, rblock, mblock))
Chris@10 241 return (plan *) 0;
Chris@10 242
Chris@10 243 p = (const problem_mpi_dft *) p_;
Chris@10 244
Chris@10 245 MPI_Comm_rank(p->comm, &my_pe);
Chris@10 246 MPI_Comm_size(p->comm, &n_pes);
Chris@10 247
Chris@10 248 m = p->sz->dims[0].n / r;
Chris@10 249
Chris@10 250 /* some hackery so that we can plan both ddft_first and ddft_last
Chris@10 251 as if they were ddft_first */
Chris@10 252 if ((ddft_first = (ego->apply == apply_ddft_first))) {
Chris@10 253 rp = r; mp = m;
Chris@10 254 mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
Chris@10 255 mpb = XM(block)(mp, mpblock[OB], my_pe);
Chris@10 256 }
Chris@10 257 else {
Chris@10 258 rp = m; mp = r;
Chris@10 259 mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
Chris@10 260 mpb = XM(block)(mp, mpblock[IB], my_pe);
Chris@10 261 }
Chris@10 262
Chris@10 263 preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
Chris@10 264
Chris@10 265 sz = XM(mkdtensor)(1);
Chris@10 266 sz->dims[0].n = mp;
Chris@10 267 sz->dims[0].b[IB] = mpblock[IB];
Chris@10 268 sz->dims[0].b[OB] = mpblock[OB];
Chris@10 269 I = (ddft_first || !preserve_input) ? p->I : p->O;
Chris@10 270 O = p->O;
Chris@10 271 cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
Chris@10 272 I, O, p->comm, p->sign,
Chris@10 273 RANK1_BIGVEC_ONLY));
Chris@10 274 if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
Chris@10 275
Chris@10 276 I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
Chris@10 277 O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
Chris@10 278 rp * p->vn * 2);
Chris@10 279 X(extract_reim)(p->sign, I, &ri, &ii);
Chris@10 280 X(extract_reim)(p->sign, O, &ro, &io);
Chris@10 281 cld_dft = X(mkplan_d)(plnr,
Chris@10 282 X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
Chris@10 283 X(mktensor_1d)(p->vn, 2, 2),
Chris@10 284 ri, ii, ro, io));
Chris@10 285 if (XM(any_true)(!cld_dft, p->comm)) goto nada;
Chris@10 286
Chris@10 287 if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
Chris@10 288 I = (ddft_first && preserve_input) ? p->O : p->I;
Chris@10 289 O = p->O;
Chris@10 290 cldt = X(mkplan_d)(plnr,
Chris@10 291 XM(mkproblem_transpose)(
Chris@10 292 m, r, p->vn * 2,
Chris@10 293 I, O,
Chris@10 294 ddft_first ? mblock[OB] : mblock[IB],
Chris@10 295 ddft_first ? rblock[OB] : rblock[IB],
Chris@10 296 p->comm, 0));
Chris@10 297 if (XM(any_true)(!cldt, p->comm)) goto nada;
Chris@10 298 }
Chris@10 299
Chris@10 300 pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
Chris@10 301
Chris@10 302 pln->cld_ddft = cld_ddft;
Chris@10 303 pln->cld_dft = cld_dft;
Chris@10 304 pln->cldt = cldt;
Chris@10 305 pln->preserve_input = preserve_input;
Chris@10 306 X(extract_reim)(p->sign, p->O, &ro, &io);
Chris@10 307 pln->roff = ro - p->O;
Chris@10 308 pln->ioff = io - p->O;
Chris@10 309 pln->vn = p->vn;
Chris@10 310 pln->m = m;
Chris@10 311 pln->r = r;
Chris@10 312 pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
Chris@10 313 pln->xmax = pln->xmin + mpb - 1;
Chris@10 314 pln->xs = rp * p->vn * 2;
Chris@10 315 pln->t = 0;
Chris@10 316
Chris@10 317 X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
Chris@10 318 if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
Chris@10 319 {
Chris@10 320 double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
Chris@10 321 pln->super.super.ops.mul += 8 * n0;
Chris@10 322 pln->super.super.ops.add += 4 * n0;
Chris@10 323 pln->super.super.ops.other += 8 * n0;
Chris@10 324 }
Chris@10 325
Chris@10 326 return &(pln->super.super);
Chris@10 327
Chris@10 328 nada:
Chris@10 329 X(plan_destroy_internal)(cldt);
Chris@10 330 X(plan_destroy_internal)(cld_dft);
Chris@10 331 X(plan_destroy_internal)(cld_ddft);
Chris@10 332 return (plan *) 0;
Chris@10 333 }
Chris@10 334
Chris@10 335 static solver *mksolver(rdftapply apply, int preserve_input)
Chris@10 336 {
Chris@10 337 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
Chris@10 338 S *slv = MKSOLVER(S, &sadt);
Chris@10 339 slv->apply = apply;
Chris@10 340 slv->preserve_input = preserve_input;
Chris@10 341 return &(slv->super);
Chris@10 342 }
Chris@10 343
Chris@10 344 void XM(dft_rank1_register)(planner *p)
Chris@10 345 {
Chris@10 346 rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
Chris@10 347 unsigned int iapply;
Chris@10 348 int preserve_input;
Chris@10 349 for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
Chris@10 350 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
Chris@10 351 REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
Chris@10 352 }