annotate src/fftw-3.3.3/mpi/api.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #include "api.h"
Chris@10 22 #include "fftw3-mpi.h"
Chris@10 23 #include "ifftw-mpi.h"
Chris@10 24 #include "mpi-transpose.h"
Chris@10 25 #include "mpi-dft.h"
Chris@10 26 #include "mpi-rdft.h"
Chris@10 27 #include "mpi-rdft2.h"
Chris@10 28
Chris@10 29 /* Convert API flags to internal MPI flags. */
Chris@10 30 #define MPI_FLAGS(f) ((f) >> 27)
Chris@10 31
Chris@10 32 /*************************************************************************/
Chris@10 33
Chris@10 34 static int mpi_inited = 0;
Chris@10 35
Chris@10 36 static MPI_Comm problem_comm(const problem *p) {
Chris@10 37 switch (p->adt->problem_kind) {
Chris@10 38 case PROBLEM_MPI_DFT:
Chris@10 39 return ((const problem_mpi_dft *) p)->comm;
Chris@10 40 case PROBLEM_MPI_RDFT:
Chris@10 41 return ((const problem_mpi_rdft *) p)->comm;
Chris@10 42 case PROBLEM_MPI_RDFT2:
Chris@10 43 return ((const problem_mpi_rdft2 *) p)->comm;
Chris@10 44 case PROBLEM_MPI_TRANSPOSE:
Chris@10 45 return ((const problem_mpi_transpose *) p)->comm;
Chris@10 46 default:
Chris@10 47 return MPI_COMM_NULL;
Chris@10 48 }
Chris@10 49 }
Chris@10 50
Chris@10 51 /* used to synchronize cost measurements (timing or estimation)
Chris@10 52 across all processes for an MPI problem, which is critical to
Chris@10 53 ensure that all processes decide to use the same MPI plans
Chris@10 54 (whereas serial plans need not be syncronized). */
Chris@10 55 static double cost_hook(const problem *p, double t, cost_kind k)
Chris@10 56 {
Chris@10 57 MPI_Comm comm = problem_comm(p);
Chris@10 58 double tsum;
Chris@10 59 if (comm == MPI_COMM_NULL) return t;
Chris@10 60 MPI_Allreduce(&t, &tsum, 1, MPI_DOUBLE,
Chris@10 61 k == COST_SUM ? MPI_SUM : MPI_MAX, comm);
Chris@10 62 return tsum;
Chris@10 63 }
Chris@10 64
Chris@10 65 /* Used to reject wisdom that is not in sync across all processes
Chris@10 66 for an MPI problem, which is critical to ensure that all processes
Chris@10 67 decide to use the same MPI plans. (Even though costs are synchronized,
Chris@10 68 above, out-of-sync wisdom may result from plans being produced
Chris@10 69 by communicators that do not span all processes, either from a
Chris@10 70 user-specified communicator or e.g. from transpose-recurse. */
Chris@10 71 static int wisdom_ok_hook(const problem *p, flags_t flags)
Chris@10 72 {
Chris@10 73 MPI_Comm comm = problem_comm(p);
Chris@10 74 int eq_me, eq_all;
Chris@10 75 /* unpack flags bitfield, since MPI communications may involve
Chris@10 76 byte-order changes and MPI cannot do this for bit fields */
Chris@10 77 #if SIZEOF_UNSIGNED_INT >= 4 /* must be big enough to hold 20-bit fields */
Chris@10 78 unsigned int f[5];
Chris@10 79 #else
Chris@10 80 unsigned long f[5]; /* at least 32 bits as per C standard */
Chris@10 81 #endif
Chris@10 82
Chris@10 83 if (comm == MPI_COMM_NULL) return 1; /* non-MPI wisdom is always ok */
Chris@10 84
Chris@10 85 if (XM(any_true)(0, comm)) return 0; /* some process had nowisdom_hook */
Chris@10 86
Chris@10 87 /* otherwise, check that the flags and solver index are identical
Chris@10 88 on all processes in this problem's communicator.
Chris@10 89
Chris@10 90 TO DO: possibly we can relax strict equality, but it is
Chris@10 91 critical to ensure that any flags which affect what plan is
Chris@10 92 created (and whether the solver is applicable) are the same,
Chris@10 93 e.g. DESTROY_INPUT, NO_UGLY, etcetera. (If the MPI algorithm
Chris@10 94 differs between processes, deadlocks/crashes generally result.) */
Chris@10 95 f[0] = flags.l;
Chris@10 96 f[1] = flags.hash_info;
Chris@10 97 f[2] = flags.timelimit_impatience;
Chris@10 98 f[3] = flags.u;
Chris@10 99 f[4] = flags.slvndx;
Chris@10 100 MPI_Bcast(f, 5,
Chris@10 101 SIZEOF_UNSIGNED_INT >= 4 ? MPI_UNSIGNED : MPI_UNSIGNED_LONG,
Chris@10 102 0, comm);
Chris@10 103 eq_me = f[0] == flags.l && f[1] == flags.hash_info
Chris@10 104 && f[2] == flags.timelimit_impatience
Chris@10 105 && f[3] == flags.u && f[4] == flags.slvndx;
Chris@10 106 MPI_Allreduce(&eq_me, &eq_all, 1, MPI_INT, MPI_LAND, comm);
Chris@10 107 return eq_all;
Chris@10 108 }
Chris@10 109
Chris@10 110 /* This hook is called when wisdom is not found. The any_true here
Chris@10 111 matches up with the any_true in wisdom_ok_hook, in order to handle
Chris@10 112 the case where some processes had wisdom (and called wisdom_ok_hook)
Chris@10 113 and some processes didn't have wisdom (and called nowisdom_hook). */
Chris@10 114 static void nowisdom_hook(const problem *p)
Chris@10 115 {
Chris@10 116 MPI_Comm comm = problem_comm(p);
Chris@10 117 if (comm == MPI_COMM_NULL) return; /* nothing to do for non-MPI p */
Chris@10 118 XM(any_true)(1, comm); /* signal nowisdom to any wisdom_ok_hook */
Chris@10 119 }
Chris@10 120
Chris@10 121 /* needed to synchronize planner bogosity flag, in case non-MPI problems
Chris@10 122 on a subset of processes encountered bogus wisdom */
Chris@10 123 static wisdom_state_t bogosity_hook(wisdom_state_t state, const problem *p)
Chris@10 124 {
Chris@10 125 MPI_Comm comm = problem_comm(p);
Chris@10 126 if (comm != MPI_COMM_NULL /* an MPI problem */
Chris@10 127 && XM(any_true)(state == WISDOM_IS_BOGUS, comm)) /* bogus somewhere */
Chris@10 128 return WISDOM_IS_BOGUS;
Chris@10 129 return state;
Chris@10 130 }
Chris@10 131
Chris@10 132 void XM(init)(void)
Chris@10 133 {
Chris@10 134 if (!mpi_inited) {
Chris@10 135 planner *plnr = X(the_planner)();
Chris@10 136 plnr->cost_hook = cost_hook;
Chris@10 137 plnr->wisdom_ok_hook = wisdom_ok_hook;
Chris@10 138 plnr->nowisdom_hook = nowisdom_hook;
Chris@10 139 plnr->bogosity_hook = bogosity_hook;
Chris@10 140 XM(conf_standard)(plnr);
Chris@10 141 mpi_inited = 1;
Chris@10 142 }
Chris@10 143 }
Chris@10 144
Chris@10 145 void XM(cleanup)(void)
Chris@10 146 {
Chris@10 147 X(cleanup)();
Chris@10 148 mpi_inited = 0;
Chris@10 149 }
Chris@10 150
Chris@10 151 /*************************************************************************/
Chris@10 152
Chris@10 153 static dtensor *mkdtensor_api(int rnk, const XM(ddim) *dims0)
Chris@10 154 {
Chris@10 155 dtensor *x = XM(mkdtensor)(rnk);
Chris@10 156 int i;
Chris@10 157 for (i = 0; i < rnk; ++i) {
Chris@10 158 x->dims[i].n = dims0[i].n;
Chris@10 159 x->dims[i].b[IB] = dims0[i].ib;
Chris@10 160 x->dims[i].b[OB] = dims0[i].ob;
Chris@10 161 }
Chris@10 162 return x;
Chris@10 163 }
Chris@10 164
Chris@10 165 static dtensor *default_sz(int rnk, const XM(ddim) *dims0, int n_pes,
Chris@10 166 int rdft2)
Chris@10 167 {
Chris@10 168 dtensor *sz = XM(mkdtensor)(rnk);
Chris@10 169 dtensor *sz0 = mkdtensor_api(rnk, dims0);
Chris@10 170 block_kind k;
Chris@10 171 int i;
Chris@10 172
Chris@10 173 for (i = 0; i < rnk; ++i)
Chris@10 174 sz->dims[i].n = dims0[i].n;
Chris@10 175
Chris@10 176 if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
Chris@10 177
Chris@10 178 for (i = 0; i < rnk; ++i) {
Chris@10 179 sz->dims[i].b[IB] = dims0[i].ib ? dims0[i].ib : sz->dims[i].n;
Chris@10 180 sz->dims[i].b[OB] = dims0[i].ob ? dims0[i].ob : sz->dims[i].n;
Chris@10 181 }
Chris@10 182
Chris@10 183 /* If we haven't used all of the processes yet, and some of the
Chris@10 184 block sizes weren't specified (i.e. 0), then set the
Chris@10 185 unspecified blocks so as to use as many processes as
Chris@10 186 possible with as few distributed dimensions as possible. */
Chris@10 187 FORALL_BLOCK_KIND(k) {
Chris@10 188 INT nb = XM(num_blocks_total)(sz, k);
Chris@10 189 INT np = n_pes / nb;
Chris@10 190 for (i = 0; i < rnk && np > 1; ++i)
Chris@10 191 if (!sz0->dims[i].b[k]) {
Chris@10 192 sz->dims[i].b[k] = XM(default_block)(sz->dims[i].n, np);
Chris@10 193 nb *= XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[k]);
Chris@10 194 np = n_pes / nb;
Chris@10 195 }
Chris@10 196 }
Chris@10 197
Chris@10 198 if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n;
Chris@10 199
Chris@10 200 /* punt for 1d prime */
Chris@10 201 if (rnk == 1 && X(is_prime)(sz->dims[0].n))
Chris@10 202 sz->dims[0].b[IB] = sz->dims[0].b[OB] = sz->dims[0].n;
Chris@10 203
Chris@10 204 XM(dtensor_destroy)(sz0);
Chris@10 205 sz0 = XM(dtensor_canonical)(sz, 0);
Chris@10 206 XM(dtensor_destroy)(sz);
Chris@10 207 return sz0;
Chris@10 208 }
Chris@10 209
Chris@10 210 /* allocate simple local (serial) dims array corresponding to n[rnk] */
Chris@10 211 static XM(ddim) *simple_dims(int rnk, const ptrdiff_t *n)
Chris@10 212 {
Chris@10 213 XM(ddim) *dims = (XM(ddim) *) MALLOC(sizeof(XM(ddim)) * rnk,
Chris@10 214 TENSORS);
Chris@10 215 int i;
Chris@10 216 for (i = 0; i < rnk; ++i)
Chris@10 217 dims[i].n = dims[i].ib = dims[i].ob = n[i];
Chris@10 218 return dims;
Chris@10 219 }
Chris@10 220
Chris@10 221 /*************************************************************************/
Chris@10 222
Chris@10 223 static void local_size(int my_pe, const dtensor *sz, block_kind k,
Chris@10 224 ptrdiff_t *local_n, ptrdiff_t *local_start)
Chris@10 225 {
Chris@10 226 int i;
Chris@10 227 if (my_pe >= XM(num_blocks_total)(sz, k))
Chris@10 228 for (i = 0; i < sz->rnk; ++i)
Chris@10 229 local_n[i] = local_start[i] = 0;
Chris@10 230 else {
Chris@10 231 XM(block_coords)(sz, k, my_pe, local_start);
Chris@10 232 for (i = 0; i < sz->rnk; ++i) {
Chris@10 233 local_n[i] = XM(block)(sz->dims[i].n, sz->dims[i].b[k],
Chris@10 234 local_start[i]);
Chris@10 235 local_start[i] *= sz->dims[i].b[k];
Chris@10 236 }
Chris@10 237 }
Chris@10 238 }
Chris@10 239
Chris@10 240 static INT prod(int rnk, const ptrdiff_t *local_n)
Chris@10 241 {
Chris@10 242 int i;
Chris@10 243 INT N = 1;
Chris@10 244 for (i = 0; i < rnk; ++i) N *= local_n[i];
Chris@10 245 return N;
Chris@10 246 }
Chris@10 247
Chris@10 248 ptrdiff_t XM(local_size_guru)(int rnk, const XM(ddim) *dims0,
Chris@10 249 ptrdiff_t howmany, MPI_Comm comm,
Chris@10 250 ptrdiff_t *local_n_in,
Chris@10 251 ptrdiff_t *local_start_in,
Chris@10 252 ptrdiff_t *local_n_out,
Chris@10 253 ptrdiff_t *local_start_out,
Chris@10 254 int sign, unsigned flags)
Chris@10 255 {
Chris@10 256 INT N;
Chris@10 257 int my_pe, n_pes, i;
Chris@10 258 dtensor *sz;
Chris@10 259
Chris@10 260 if (rnk == 0)
Chris@10 261 return howmany;
Chris@10 262
Chris@10 263 MPI_Comm_rank(comm, &my_pe);
Chris@10 264 MPI_Comm_size(comm, &n_pes);
Chris@10 265 sz = default_sz(rnk, dims0, n_pes, 0);
Chris@10 266
Chris@10 267 /* Now, we must figure out how much local space the user should
Chris@10 268 allocate (or at least an upper bound). This depends strongly
Chris@10 269 on the exact algorithms we employ...ugh! FIXME: get this info
Chris@10 270 from the solvers somehow? */
Chris@10 271 N = 1; /* never return zero allocation size */
Chris@10 272 if (rnk > 1 && XM(is_block1d)(sz, IB) && XM(is_block1d)(sz, OB)) {
Chris@10 273 INT Nafter;
Chris@10 274 ddim odims[2];
Chris@10 275
Chris@10 276 /* dft-rank-geq2-transposed */
Chris@10 277 odims[0] = sz->dims[0]; odims[1] = sz->dims[1]; /* save */
Chris@10 278 /* we may need extra space for transposed intermediate data */
Chris@10 279 for (i = 0; i < 2; ++i)
Chris@10 280 if (XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[IB]) == 1 &&
Chris@10 281 XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[OB]) == 1) {
Chris@10 282 sz->dims[i].b[IB]
Chris@10 283 = XM(default_block)(sz->dims[i].n, n_pes);
Chris@10 284 sz->dims[1-i].b[IB] = sz->dims[1-i].n;
Chris@10 285 local_size(my_pe, sz, IB, local_n_in, local_start_in);
Chris@10 286 N = X(imax)(N, prod(rnk, local_n_in));
Chris@10 287 sz->dims[i] = odims[i];
Chris@10 288 sz->dims[1-i] = odims[1-i];
Chris@10 289 break;
Chris@10 290 }
Chris@10 291
Chris@10 292 /* dft-rank-geq2 */
Chris@10 293 Nafter = howmany;
Chris@10 294 for (i = 1; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
Chris@10 295 N = X(imax)(N, (sz->dims[0].n
Chris@10 296 * XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
Chris@10 297 my_pe) + howmany - 1) / howmany);
Chris@10 298
Chris@10 299 /* dft-rank-geq2 with dimensions swapped */
Chris@10 300 Nafter = howmany * sz->dims[0].n;
Chris@10 301 for (i = 2; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
Chris@10 302 N = X(imax)(N, (sz->dims[1].n
Chris@10 303 * XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
Chris@10 304 my_pe) + howmany - 1) / howmany);
Chris@10 305 }
Chris@10 306 else if (rnk == 1) {
Chris@10 307 if (howmany >= n_pes && !MPI_FLAGS(flags)) { /* dft-rank1-bigvec */
Chris@10 308 ptrdiff_t n[2], start[2];
Chris@10 309 dtensor *sz2 = XM(mkdtensor)(2);
Chris@10 310 sz2->dims[0] = sz->dims[0];
Chris@10 311 sz2->dims[0].b[IB] = sz->dims[0].n;
Chris@10 312 sz2->dims[1].n = sz2->dims[1].b[OB] = howmany;
Chris@10 313 sz2->dims[1].b[IB] = XM(default_block)(howmany, n_pes);
Chris@10 314 local_size(my_pe, sz2, IB, n, start);
Chris@10 315 XM(dtensor_destroy)(sz2);
Chris@10 316 N = X(imax)(N, (prod(2, n) + howmany - 1) / howmany);
Chris@10 317 }
Chris@10 318 else { /* dft-rank1 */
Chris@10 319 INT r, m, rblock[2], mblock[2];
Chris@10 320
Chris@10 321 /* Since the 1d transforms are so different, we require
Chris@10 322 the user to call local_size_1d for this case. Ugh. */
Chris@10 323 CK(sign == FFTW_FORWARD || sign == FFTW_BACKWARD);
Chris@10 324
Chris@10 325 if ((r = XM(choose_radix)(sz->dims[0], n_pes, flags, sign,
Chris@10 326 rblock, mblock))) {
Chris@10 327 m = sz->dims[0].n / r;
Chris@10 328 if (flags & FFTW_MPI_SCRAMBLED_IN)
Chris@10 329 sz->dims[0].b[IB] = rblock[IB] * m;
Chris@10 330 else { /* !SCRAMBLED_IN */
Chris@10 331 sz->dims[0].b[IB] = r * mblock[IB];
Chris@10 332 N = X(imax)(N, rblock[IB] * m);
Chris@10 333 }
Chris@10 334 if (flags & FFTW_MPI_SCRAMBLED_OUT)
Chris@10 335 sz->dims[0].b[OB] = r * mblock[OB];
Chris@10 336 else { /* !SCRAMBLED_OUT */
Chris@10 337 N = X(imax)(N, r * mblock[OB]);
Chris@10 338 sz->dims[0].b[OB] = rblock[OB] * m;
Chris@10 339 }
Chris@10 340 }
Chris@10 341 }
Chris@10 342 }
Chris@10 343
Chris@10 344 local_size(my_pe, sz, IB, local_n_in, local_start_in);
Chris@10 345 local_size(my_pe, sz, OB, local_n_out, local_start_out);
Chris@10 346
Chris@10 347 /* at least, make sure we have enough space to store input & output */
Chris@10 348 N = X(imax)(N, X(imax)(prod(rnk, local_n_in), prod(rnk, local_n_out)));
Chris@10 349
Chris@10 350 XM(dtensor_destroy)(sz);
Chris@10 351 return N * howmany;
Chris@10 352 }
Chris@10 353
Chris@10 354 ptrdiff_t XM(local_size_many_transposed)(int rnk, const ptrdiff_t *n,
Chris@10 355 ptrdiff_t howmany,
Chris@10 356 ptrdiff_t xblock, ptrdiff_t yblock,
Chris@10 357 MPI_Comm comm,
Chris@10 358 ptrdiff_t *local_nx,
Chris@10 359 ptrdiff_t *local_x_start,
Chris@10 360 ptrdiff_t *local_ny,
Chris@10 361 ptrdiff_t *local_y_start)
Chris@10 362 {
Chris@10 363 ptrdiff_t N;
Chris@10 364 XM(ddim) *dims;
Chris@10 365 ptrdiff_t *local;
Chris@10 366
Chris@10 367 if (rnk == 0) {
Chris@10 368 *local_nx = *local_ny = 1;
Chris@10 369 *local_x_start = *local_y_start = 0;
Chris@10 370 return howmany;
Chris@10 371 }
Chris@10 372
Chris@10 373 dims = simple_dims(rnk, n);
Chris@10 374 local = (ptrdiff_t *) MALLOC(sizeof(ptrdiff_t) * rnk * 4, TENSORS);
Chris@10 375
Chris@10 376 /* default 1d block distribution, with transposed output
Chris@10 377 if yblock < n[1] */
Chris@10 378 dims[0].ib = xblock;
Chris@10 379 if (rnk > 1) {
Chris@10 380 if (yblock < n[1])
Chris@10 381 dims[1].ob = yblock;
Chris@10 382 else
Chris@10 383 dims[0].ob = xblock;
Chris@10 384 }
Chris@10 385 else
Chris@10 386 dims[0].ob = xblock; /* FIXME: 1d not really supported here
Chris@10 387 since we don't have flags/sign */
Chris@10 388
Chris@10 389 N = XM(local_size_guru)(rnk, dims, howmany, comm,
Chris@10 390 local, local + rnk,
Chris@10 391 local + 2*rnk, local + 3*rnk,
Chris@10 392 0, 0);
Chris@10 393 *local_nx = local[0];
Chris@10 394 *local_x_start = local[rnk];
Chris@10 395 if (rnk > 1) {
Chris@10 396 *local_ny = local[2*rnk + 1];
Chris@10 397 *local_y_start = local[3*rnk + 1];
Chris@10 398 }
Chris@10 399 else {
Chris@10 400 *local_ny = *local_nx;
Chris@10 401 *local_y_start = *local_x_start;
Chris@10 402 }
Chris@10 403 X(ifree)(local);
Chris@10 404 X(ifree)(dims);
Chris@10 405 return N;
Chris@10 406 }
Chris@10 407
Chris@10 408 ptrdiff_t XM(local_size_many)(int rnk, const ptrdiff_t *n,
Chris@10 409 ptrdiff_t howmany,
Chris@10 410 ptrdiff_t xblock,
Chris@10 411 MPI_Comm comm,
Chris@10 412 ptrdiff_t *local_nx,
Chris@10 413 ptrdiff_t *local_x_start)
Chris@10 414 {
Chris@10 415 ptrdiff_t local_ny, local_y_start;
Chris@10 416 return XM(local_size_many_transposed)(rnk, n, howmany,
Chris@10 417 xblock, rnk > 1
Chris@10 418 ? n[1] : FFTW_MPI_DEFAULT_BLOCK,
Chris@10 419 comm,
Chris@10 420 local_nx, local_x_start,
Chris@10 421 &local_ny, &local_y_start);
Chris@10 422 }
Chris@10 423
Chris@10 424
Chris@10 425 ptrdiff_t XM(local_size_transposed)(int rnk, const ptrdiff_t *n,
Chris@10 426 MPI_Comm comm,
Chris@10 427 ptrdiff_t *local_nx,
Chris@10 428 ptrdiff_t *local_x_start,
Chris@10 429 ptrdiff_t *local_ny,
Chris@10 430 ptrdiff_t *local_y_start)
Chris@10 431 {
Chris@10 432 return XM(local_size_many_transposed)(rnk, n, 1,
Chris@10 433 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 434 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 435 comm,
Chris@10 436 local_nx, local_x_start,
Chris@10 437 local_ny, local_y_start);
Chris@10 438 }
Chris@10 439
Chris@10 440 ptrdiff_t XM(local_size)(int rnk, const ptrdiff_t *n,
Chris@10 441 MPI_Comm comm,
Chris@10 442 ptrdiff_t *local_nx,
Chris@10 443 ptrdiff_t *local_x_start)
Chris@10 444 {
Chris@10 445 return XM(local_size_many)(rnk, n, 1, FFTW_MPI_DEFAULT_BLOCK, comm,
Chris@10 446 local_nx, local_x_start);
Chris@10 447 }
Chris@10 448
Chris@10 449 ptrdiff_t XM(local_size_many_1d)(ptrdiff_t nx, ptrdiff_t howmany,
Chris@10 450 MPI_Comm comm, int sign, unsigned flags,
Chris@10 451 ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
Chris@10 452 ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
Chris@10 453 {
Chris@10 454 XM(ddim) d;
Chris@10 455 d.n = nx;
Chris@10 456 d.ib = d.ob = FFTW_MPI_DEFAULT_BLOCK;
Chris@10 457 return XM(local_size_guru)(1, &d, howmany, comm,
Chris@10 458 local_nx, local_x_start,
Chris@10 459 local_ny, local_y_start, sign, flags);
Chris@10 460 }
Chris@10 461
Chris@10 462 ptrdiff_t XM(local_size_1d)(ptrdiff_t nx,
Chris@10 463 MPI_Comm comm, int sign, unsigned flags,
Chris@10 464 ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
Chris@10 465 ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
Chris@10 466 {
Chris@10 467 return XM(local_size_many_1d)(nx, 1, comm, sign, flags,
Chris@10 468 local_nx, local_x_start,
Chris@10 469 local_ny, local_y_start);
Chris@10 470 }
Chris@10 471
Chris@10 472 ptrdiff_t XM(local_size_2d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
Chris@10 473 MPI_Comm comm,
Chris@10 474 ptrdiff_t *local_nx,
Chris@10 475 ptrdiff_t *local_x_start,
Chris@10 476 ptrdiff_t *local_ny,
Chris@10 477 ptrdiff_t *local_y_start)
Chris@10 478 {
Chris@10 479 ptrdiff_t n[2];
Chris@10 480 n[0] = nx; n[1] = ny;
Chris@10 481 return XM(local_size_transposed)(2, n, comm,
Chris@10 482 local_nx, local_x_start,
Chris@10 483 local_ny, local_y_start);
Chris@10 484 }
Chris@10 485
Chris@10 486 ptrdiff_t XM(local_size_2d)(ptrdiff_t nx, ptrdiff_t ny, MPI_Comm comm,
Chris@10 487 ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
Chris@10 488 {
Chris@10 489 ptrdiff_t n[2];
Chris@10 490 n[0] = nx; n[1] = ny;
Chris@10 491 return XM(local_size)(2, n, comm, local_nx, local_x_start);
Chris@10 492 }
Chris@10 493
Chris@10 494 ptrdiff_t XM(local_size_3d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
Chris@10 495 ptrdiff_t nz,
Chris@10 496 MPI_Comm comm,
Chris@10 497 ptrdiff_t *local_nx,
Chris@10 498 ptrdiff_t *local_x_start,
Chris@10 499 ptrdiff_t *local_ny,
Chris@10 500 ptrdiff_t *local_y_start)
Chris@10 501 {
Chris@10 502 ptrdiff_t n[3];
Chris@10 503 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@10 504 return XM(local_size_transposed)(3, n, comm,
Chris@10 505 local_nx, local_x_start,
Chris@10 506 local_ny, local_y_start);
Chris@10 507 }
Chris@10 508
Chris@10 509 ptrdiff_t XM(local_size_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@10 510 MPI_Comm comm,
Chris@10 511 ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
Chris@10 512 {
Chris@10 513 ptrdiff_t n[3];
Chris@10 514 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@10 515 return XM(local_size)(3, n, comm, local_nx, local_x_start);
Chris@10 516 }
Chris@10 517
Chris@10 518 /*************************************************************************/
Chris@10 519 /* Transpose API */
Chris@10 520
Chris@10 521 X(plan) XM(plan_many_transpose)(ptrdiff_t nx, ptrdiff_t ny,
Chris@10 522 ptrdiff_t howmany,
Chris@10 523 ptrdiff_t xblock, ptrdiff_t yblock,
Chris@10 524 R *in, R *out,
Chris@10 525 MPI_Comm comm, unsigned flags)
Chris@10 526 {
Chris@10 527 int n_pes;
Chris@10 528 XM(init)();
Chris@10 529
Chris@10 530 if (howmany < 0 || xblock < 0 || yblock < 0 ||
Chris@10 531 nx <= 0 || ny <= 0) return 0;
Chris@10 532
Chris@10 533 MPI_Comm_size(comm, &n_pes);
Chris@10 534 if (!xblock) xblock = XM(default_block)(nx, n_pes);
Chris@10 535 if (!yblock) yblock = XM(default_block)(ny, n_pes);
Chris@10 536 if (n_pes < XM(num_blocks)(nx, xblock)
Chris@10 537 || n_pes < XM(num_blocks)(ny, yblock))
Chris@10 538 return 0;
Chris@10 539
Chris@10 540 return
Chris@10 541 X(mkapiplan)(FFTW_FORWARD, flags,
Chris@10 542 XM(mkproblem_transpose)(nx, ny, howmany,
Chris@10 543 in, out, xblock, yblock,
Chris@10 544 comm, MPI_FLAGS(flags)));
Chris@10 545 }
Chris@10 546
Chris@10 547 X(plan) XM(plan_transpose)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
Chris@10 548 MPI_Comm comm, unsigned flags)
Chris@10 549
Chris@10 550 {
Chris@10 551 return XM(plan_many_transpose)(nx, ny, 1,
Chris@10 552 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 553 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 554 in, out, comm, flags);
Chris@10 555 }
Chris@10 556
Chris@10 557 /*************************************************************************/
Chris@10 558 /* Complex DFT API */
Chris@10 559
Chris@10 560 X(plan) XM(plan_guru_dft)(int rnk, const XM(ddim) *dims0,
Chris@10 561 ptrdiff_t howmany,
Chris@10 562 C *in, C *out,
Chris@10 563 MPI_Comm comm, int sign, unsigned flags)
Chris@10 564 {
Chris@10 565 int n_pes, i;
Chris@10 566 dtensor *sz;
Chris@10 567
Chris@10 568 XM(init)();
Chris@10 569
Chris@10 570 if (howmany < 0 || rnk < 1) return 0;
Chris@10 571 for (i = 0; i < rnk; ++i)
Chris@10 572 if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
Chris@10 573 return 0;
Chris@10 574
Chris@10 575 MPI_Comm_size(comm, &n_pes);
Chris@10 576 sz = default_sz(rnk, dims0, n_pes, 0);
Chris@10 577
Chris@10 578 if (XM(num_blocks_total)(sz, IB) > n_pes
Chris@10 579 || XM(num_blocks_total)(sz, OB) > n_pes) {
Chris@10 580 XM(dtensor_destroy)(sz);
Chris@10 581 return 0;
Chris@10 582 }
Chris@10 583
Chris@10 584 return
Chris@10 585 X(mkapiplan)(sign, flags,
Chris@10 586 XM(mkproblem_dft_d)(sz, howmany,
Chris@10 587 (R *) in, (R *) out,
Chris@10 588 comm, sign,
Chris@10 589 MPI_FLAGS(flags)));
Chris@10 590 }
Chris@10 591
Chris@10 592 X(plan) XM(plan_many_dft)(int rnk, const ptrdiff_t *n,
Chris@10 593 ptrdiff_t howmany,
Chris@10 594 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10 595 C *in, C *out,
Chris@10 596 MPI_Comm comm, int sign, unsigned flags)
Chris@10 597 {
Chris@10 598 XM(ddim) *dims = simple_dims(rnk, n);
Chris@10 599 X(plan) pln;
Chris@10 600
Chris@10 601 if (rnk == 1) {
Chris@10 602 dims[0].ib = iblock;
Chris@10 603 dims[0].ob = oblock;
Chris@10 604 }
Chris@10 605 else if (rnk > 1) {
Chris@10 606 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@10 607 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@10 608 }
Chris@10 609
Chris@10 610 pln = XM(plan_guru_dft)(rnk,dims,howmany, in,out, comm, sign, flags);
Chris@10 611 X(ifree)(dims);
Chris@10 612 return pln;
Chris@10 613 }
Chris@10 614
Chris@10 615 X(plan) XM(plan_dft)(int rnk, const ptrdiff_t *n, C *in, C *out,
Chris@10 616 MPI_Comm comm, int sign, unsigned flags)
Chris@10 617 {
Chris@10 618 return XM(plan_many_dft)(rnk, n, 1,
Chris@10 619 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 620 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 621 in, out, comm, sign, flags);
Chris@10 622 }
Chris@10 623
Chris@10 624 X(plan) XM(plan_dft_1d)(ptrdiff_t nx, C *in, C *out,
Chris@10 625 MPI_Comm comm, int sign, unsigned flags)
Chris@10 626 {
Chris@10 627 return XM(plan_dft)(1, &nx, in, out, comm, sign, flags);
Chris@10 628 }
Chris@10 629
Chris@10 630 X(plan) XM(plan_dft_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, C *out,
Chris@10 631 MPI_Comm comm, int sign, unsigned flags)
Chris@10 632 {
Chris@10 633 ptrdiff_t n[2];
Chris@10 634 n[0] = nx; n[1] = ny;
Chris@10 635 return XM(plan_dft)(2, n, in, out, comm, sign, flags);
Chris@10 636 }
Chris@10 637
Chris@10 638 X(plan) XM(plan_dft_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@10 639 C *in, C *out,
Chris@10 640 MPI_Comm comm, int sign, unsigned flags)
Chris@10 641 {
Chris@10 642 ptrdiff_t n[3];
Chris@10 643 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@10 644 return XM(plan_dft)(3, n, in, out, comm, sign, flags);
Chris@10 645 }
Chris@10 646
Chris@10 647 /*************************************************************************/
Chris@10 648 /* R2R API */
Chris@10 649
Chris@10 650 X(plan) XM(plan_guru_r2r)(int rnk, const XM(ddim) *dims0,
Chris@10 651 ptrdiff_t howmany,
Chris@10 652 R *in, R *out,
Chris@10 653 MPI_Comm comm, const X(r2r_kind) *kind,
Chris@10 654 unsigned flags)
Chris@10 655 {
Chris@10 656 int n_pes, i;
Chris@10 657 dtensor *sz;
Chris@10 658 rdft_kind *k;
Chris@10 659 X(plan) pln;
Chris@10 660
Chris@10 661 XM(init)();
Chris@10 662
Chris@10 663 if (howmany < 0 || rnk < 1) return 0;
Chris@10 664 for (i = 0; i < rnk; ++i)
Chris@10 665 if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
Chris@10 666 return 0;
Chris@10 667
Chris@10 668 k = X(map_r2r_kind)(rnk, kind);
Chris@10 669
Chris@10 670 MPI_Comm_size(comm, &n_pes);
Chris@10 671 sz = default_sz(rnk, dims0, n_pes, 0);
Chris@10 672
Chris@10 673 if (XM(num_blocks_total)(sz, IB) > n_pes
Chris@10 674 || XM(num_blocks_total)(sz, OB) > n_pes) {
Chris@10 675 XM(dtensor_destroy)(sz);
Chris@10 676 return 0;
Chris@10 677 }
Chris@10 678
Chris@10 679 pln = X(mkapiplan)(0, flags,
Chris@10 680 XM(mkproblem_rdft_d)(sz, howmany,
Chris@10 681 in, out,
Chris@10 682 comm, k, MPI_FLAGS(flags)));
Chris@10 683 X(ifree0)(k);
Chris@10 684 return pln;
Chris@10 685 }
Chris@10 686
Chris@10 687 X(plan) XM(plan_many_r2r)(int rnk, const ptrdiff_t *n,
Chris@10 688 ptrdiff_t howmany,
Chris@10 689 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10 690 R *in, R *out,
Chris@10 691 MPI_Comm comm, const X(r2r_kind) *kind,
Chris@10 692 unsigned flags)
Chris@10 693 {
Chris@10 694 XM(ddim) *dims = simple_dims(rnk, n);
Chris@10 695 X(plan) pln;
Chris@10 696
Chris@10 697 if (rnk == 1) {
Chris@10 698 dims[0].ib = iblock;
Chris@10 699 dims[0].ob = oblock;
Chris@10 700 }
Chris@10 701 else if (rnk > 1) {
Chris@10 702 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@10 703 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@10 704 }
Chris@10 705
Chris@10 706 pln = XM(plan_guru_r2r)(rnk,dims,howmany, in,out, comm, kind, flags);
Chris@10 707 X(ifree)(dims);
Chris@10 708 return pln;
Chris@10 709 }
Chris@10 710
Chris@10 711 X(plan) XM(plan_r2r)(int rnk, const ptrdiff_t *n, R *in, R *out,
Chris@10 712 MPI_Comm comm,
Chris@10 713 const X(r2r_kind) *kind,
Chris@10 714 unsigned flags)
Chris@10 715 {
Chris@10 716 return XM(plan_many_r2r)(rnk, n, 1,
Chris@10 717 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 718 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 719 in, out, comm, kind, flags);
Chris@10 720 }
Chris@10 721
Chris@10 722 X(plan) XM(plan_r2r_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
Chris@10 723 MPI_Comm comm,
Chris@10 724 X(r2r_kind) kindx, X(r2r_kind) kindy,
Chris@10 725 unsigned flags)
Chris@10 726 {
Chris@10 727 ptrdiff_t n[2];
Chris@10 728 X(r2r_kind) kind[2];
Chris@10 729 n[0] = nx; n[1] = ny;
Chris@10 730 kind[0] = kindx; kind[1] = kindy;
Chris@10 731 return XM(plan_r2r)(2, n, in, out, comm, kind, flags);
Chris@10 732 }
Chris@10 733
Chris@10 734 X(plan) XM(plan_r2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@10 735 R *in, R *out,
Chris@10 736 MPI_Comm comm,
Chris@10 737 X(r2r_kind) kindx, X(r2r_kind) kindy,
Chris@10 738 X(r2r_kind) kindz,
Chris@10 739 unsigned flags)
Chris@10 740 {
Chris@10 741 ptrdiff_t n[3];
Chris@10 742 X(r2r_kind) kind[3];
Chris@10 743 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@10 744 kind[0] = kindx; kind[1] = kindy; kind[2] = kindz;
Chris@10 745 return XM(plan_r2r)(3, n, in, out, comm, kind, flags);
Chris@10 746 }
Chris@10 747
Chris@10 748 /*************************************************************************/
Chris@10 749 /* R2C/C2R API */
Chris@10 750
Chris@10 751 static X(plan) plan_guru_rdft2(int rnk, const XM(ddim) *dims0,
Chris@10 752 ptrdiff_t howmany,
Chris@10 753 R *r, C *c,
Chris@10 754 MPI_Comm comm, rdft_kind kind, unsigned flags)
Chris@10 755 {
Chris@10 756 int n_pes, i;
Chris@10 757 dtensor *sz;
Chris@10 758 R *cr = (R *) c;
Chris@10 759
Chris@10 760 XM(init)();
Chris@10 761
Chris@10 762 if (howmany < 0 || rnk < 2) return 0;
Chris@10 763 for (i = 0; i < rnk; ++i)
Chris@10 764 if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
Chris@10 765 return 0;
Chris@10 766
Chris@10 767 MPI_Comm_size(comm, &n_pes);
Chris@10 768 sz = default_sz(rnk, dims0, n_pes, 1);
Chris@10 769
Chris@10 770 sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
Chris@10 771 if (XM(num_blocks_total)(sz, IB) > n_pes
Chris@10 772 || XM(num_blocks_total)(sz, OB) > n_pes) {
Chris@10 773 XM(dtensor_destroy)(sz);
Chris@10 774 return 0;
Chris@10 775 }
Chris@10 776 sz->dims[rnk-1].n = dims0[rnk-1].n;
Chris@10 777
Chris@10 778 if (kind == R2HC)
Chris@10 779 return X(mkapiplan)(0, flags,
Chris@10 780 XM(mkproblem_rdft2_d)(sz, howmany,
Chris@10 781 r, cr, comm, R2HC,
Chris@10 782 MPI_FLAGS(flags)));
Chris@10 783 else
Chris@10 784 return X(mkapiplan)(0, flags,
Chris@10 785 XM(mkproblem_rdft2_d)(sz, howmany,
Chris@10 786 cr, r, comm, HC2R,
Chris@10 787 MPI_FLAGS(flags)));
Chris@10 788 }
Chris@10 789
Chris@10 790 X(plan) XM(plan_many_dft_r2c)(int rnk, const ptrdiff_t *n,
Chris@10 791 ptrdiff_t howmany,
Chris@10 792 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10 793 R *in, C *out,
Chris@10 794 MPI_Comm comm, unsigned flags)
Chris@10 795 {
Chris@10 796 XM(ddim) *dims = simple_dims(rnk, n);
Chris@10 797 X(plan) pln;
Chris@10 798
Chris@10 799 if (rnk == 1) {
Chris@10 800 dims[0].ib = iblock;
Chris@10 801 dims[0].ob = oblock;
Chris@10 802 }
Chris@10 803 else if (rnk > 1) {
Chris@10 804 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@10 805 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@10 806 }
Chris@10 807
Chris@10 808 pln = plan_guru_rdft2(rnk,dims,howmany, in,out, comm, R2HC, flags);
Chris@10 809 X(ifree)(dims);
Chris@10 810 return pln;
Chris@10 811 }
Chris@10 812
Chris@10 813 X(plan) XM(plan_many_dft_c2r)(int rnk, const ptrdiff_t *n,
Chris@10 814 ptrdiff_t howmany,
Chris@10 815 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10 816 C *in, R *out,
Chris@10 817 MPI_Comm comm, unsigned flags)
Chris@10 818 {
Chris@10 819 XM(ddim) *dims = simple_dims(rnk, n);
Chris@10 820 X(plan) pln;
Chris@10 821
Chris@10 822 if (rnk == 1) {
Chris@10 823 dims[0].ib = iblock;
Chris@10 824 dims[0].ob = oblock;
Chris@10 825 }
Chris@10 826 else if (rnk > 1) {
Chris@10 827 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@10 828 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@10 829 }
Chris@10 830
Chris@10 831 pln = plan_guru_rdft2(rnk,dims,howmany, out,in, comm, HC2R, flags);
Chris@10 832 X(ifree)(dims);
Chris@10 833 return pln;
Chris@10 834 }
Chris@10 835
Chris@10 836 X(plan) XM(plan_dft_r2c)(int rnk, const ptrdiff_t *n, R *in, C *out,
Chris@10 837 MPI_Comm comm, unsigned flags)
Chris@10 838 {
Chris@10 839 return XM(plan_many_dft_r2c)(rnk, n, 1,
Chris@10 840 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 841 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 842 in, out, comm, flags);
Chris@10 843 }
Chris@10 844
Chris@10 845 X(plan) XM(plan_dft_r2c_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, C *out,
Chris@10 846 MPI_Comm comm, unsigned flags)
Chris@10 847 {
Chris@10 848 ptrdiff_t n[2];
Chris@10 849 n[0] = nx; n[1] = ny;
Chris@10 850 return XM(plan_dft_r2c)(2, n, in, out, comm, flags);
Chris@10 851 }
Chris@10 852
Chris@10 853 X(plan) XM(plan_dft_r2c_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@10 854 R *in, C *out, MPI_Comm comm, unsigned flags)
Chris@10 855 {
Chris@10 856 ptrdiff_t n[3];
Chris@10 857 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@10 858 return XM(plan_dft_r2c)(3, n, in, out, comm, flags);
Chris@10 859 }
Chris@10 860
Chris@10 861 X(plan) XM(plan_dft_c2r)(int rnk, const ptrdiff_t *n, C *in, R *out,
Chris@10 862 MPI_Comm comm, unsigned flags)
Chris@10 863 {
Chris@10 864 return XM(plan_many_dft_c2r)(rnk, n, 1,
Chris@10 865 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 866 FFTW_MPI_DEFAULT_BLOCK,
Chris@10 867 in, out, comm, flags);
Chris@10 868 }
Chris@10 869
Chris@10 870 X(plan) XM(plan_dft_c2r_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, R *out,
Chris@10 871 MPI_Comm comm, unsigned flags)
Chris@10 872 {
Chris@10 873 ptrdiff_t n[2];
Chris@10 874 n[0] = nx; n[1] = ny;
Chris@10 875 return XM(plan_dft_c2r)(2, n, in, out, comm, flags);
Chris@10 876 }
Chris@10 877
Chris@10 878 X(plan) XM(plan_dft_c2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@10 879 C *in, R *out, MPI_Comm comm, unsigned flags)
Chris@10 880 {
Chris@10 881 ptrdiff_t n[3];
Chris@10 882 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@10 883 return XM(plan_dft_c2r)(3, n, in, out, comm, flags);
Chris@10 884 }
Chris@10 885
Chris@10 886 /*************************************************************************/
Chris@10 887 /* New-array execute functions */
Chris@10 888
Chris@10 889 void XM(execute_dft)(const X(plan) p, C *in, C *out) {
Chris@10 890 /* internally, MPI plans are just rdft plans */
Chris@10 891 X(execute_r2r)(p, (R*) in, (R*) out);
Chris@10 892 }
Chris@10 893
Chris@10 894 void XM(execute_dft_r2c)(const X(plan) p, R *in, C *out) {
Chris@10 895 /* internally, MPI plans are just rdft plans */
Chris@10 896 X(execute_r2r)(p, in, (R*) out);
Chris@10 897 }
Chris@10 898
Chris@10 899 void XM(execute_dft_c2r)(const X(plan) p, C *in, R *out) {
Chris@10 900 /* internally, MPI plans are just rdft plans */
Chris@10 901 X(execute_r2r)(p, (R*) in, out);
Chris@10 902 }
Chris@10 903
Chris@10 904 void XM(execute_r2r)(const X(plan) p, R *in, R *out) {
Chris@10 905 /* internally, MPI plans are just rdft plans */
Chris@10 906 X(execute_r2r)(p, in, out);
Chris@10 907 }