annotate src/fftw-3.3.3/libbench2/verify-r2r.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
Chris@10 22 general for all of the r2r variants...oh well, for now */
Chris@10 23
Chris@10 24 #include "verify.h"
Chris@10 25 #include <math.h>
Chris@10 26 #include <stdlib.h>
Chris@10 27 #include <stdio.h>
Chris@10 28
Chris@10 29 typedef struct {
Chris@10 30 bench_problem *p;
Chris@10 31 bench_tensor *probsz;
Chris@10 32 bench_tensor *totalsz;
Chris@10 33 bench_tensor *pckdsz;
Chris@10 34 bench_tensor *pckdvecsz;
Chris@10 35 } info;
Chris@10 36
Chris@10 37 /*
Chris@10 38 * Utility functions:
Chris@10 39 */
Chris@10 40
Chris@10 41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
Chris@10 42 static double dmin(double x, double y) { return (x < y) ? x : y; }
Chris@10 43
Chris@10 44 static double raerror(R *a, R *b, int n)
Chris@10 45 {
Chris@10 46 if (n > 0) {
Chris@10 47 /* compute the relative Linf error */
Chris@10 48 double e = 0.0, mag = 0.0;
Chris@10 49 int i;
Chris@10 50
Chris@10 51 for (i = 0; i < n; ++i) {
Chris@10 52 e = dmax(e, dabs(a[i] - b[i]));
Chris@10 53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
Chris@10 54 }
Chris@10 55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
Chris@10 56 e = 0.0;
Chris@10 57 else
Chris@10 58 e /= mag;
Chris@10 59
Chris@10 60 #ifdef HAVE_ISNAN
Chris@10 61 BENCH_ASSERT(!isnan(e));
Chris@10 62 #endif
Chris@10 63 return e;
Chris@10 64 } else
Chris@10 65 return 0.0;
Chris@10 66 }
Chris@10 67
Chris@10 68 #define by2pi(m, n) ((K2PI * (m)) / (n))
Chris@10 69
Chris@10 70 /*
Chris@10 71 * Improve accuracy by reducing x to range [0..1/8]
Chris@10 72 * before multiplication by 2 * PI.
Chris@10 73 */
Chris@10 74
Chris@10 75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
Chris@10 76 {
Chris@10 77 /* waiting for C to get tail recursion... */
Chris@10 78 trigreal half_n = n * 0.5;
Chris@10 79 trigreal quarter_n = half_n * 0.5;
Chris@10 80 trigreal eighth_n = quarter_n * 0.5;
Chris@10 81 trigreal sgn = 1.0;
Chris@10 82
Chris@10 83 if (sinp) goto sin;
Chris@10 84 cos:
Chris@10 85 if (m < 0) { m = -m; /* goto cos; */ }
Chris@10 86 if (m > half_n) { m = n - m; goto cos; }
Chris@10 87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
Chris@10 88 return sgn * COS(by2pi(m, n));
Chris@10 89
Chris@10 90 msin:
Chris@10 91 sgn = -sgn;
Chris@10 92 sin:
Chris@10 93 if (m < 0) { m = -m; goto msin; }
Chris@10 94 if (m > half_n) { m = n - m; goto msin; }
Chris@10 95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
Chris@10 96 return sgn * SIN(by2pi(m, n));
Chris@10 97 }
Chris@10 98
Chris@10 99 static trigreal cos2pi(int m, int n)
Chris@10 100 {
Chris@10 101 return bench_sincos((trigreal)m, (trigreal)n, 0);
Chris@10 102 }
Chris@10 103
Chris@10 104 static trigreal sin2pi(int m, int n)
Chris@10 105 {
Chris@10 106 return bench_sincos((trigreal)m, (trigreal)n, 1);
Chris@10 107 }
Chris@10 108
Chris@10 109 static trigreal cos00(int i, int j, int n)
Chris@10 110 {
Chris@10 111 return cos2pi(i * j, n);
Chris@10 112 }
Chris@10 113
Chris@10 114 static trigreal cos01(int i, int j, int n)
Chris@10 115 {
Chris@10 116 return cos00(i, 2*j + 1, 2*n);
Chris@10 117 }
Chris@10 118
Chris@10 119 static trigreal cos10(int i, int j, int n)
Chris@10 120 {
Chris@10 121 return cos00(2*i + 1, j, 2*n);
Chris@10 122 }
Chris@10 123
Chris@10 124 static trigreal cos11(int i, int j, int n)
Chris@10 125 {
Chris@10 126 return cos00(2*i + 1, 2*j + 1, 4*n);
Chris@10 127 }
Chris@10 128
Chris@10 129 static trigreal sin00(int i, int j, int n)
Chris@10 130 {
Chris@10 131 return sin2pi(i * j, n);
Chris@10 132 }
Chris@10 133
Chris@10 134 static trigreal sin01(int i, int j, int n)
Chris@10 135 {
Chris@10 136 return sin00(i, 2*j + 1, 2*n);
Chris@10 137 }
Chris@10 138
Chris@10 139 static trigreal sin10(int i, int j, int n)
Chris@10 140 {
Chris@10 141 return sin00(2*i + 1, j, 2*n);
Chris@10 142 }
Chris@10 143
Chris@10 144 static trigreal sin11(int i, int j, int n)
Chris@10 145 {
Chris@10 146 return sin00(2*i + 1, 2*j + 1, 4*n);
Chris@10 147 }
Chris@10 148
Chris@10 149 static trigreal realhalf(int i, int j, int n)
Chris@10 150 {
Chris@10 151 UNUSED(i);
Chris@10 152 if (j <= n - j)
Chris@10 153 return 1.0;
Chris@10 154 else
Chris@10 155 return 0.0;
Chris@10 156 }
Chris@10 157
Chris@10 158 static trigreal coshalf(int i, int j, int n)
Chris@10 159 {
Chris@10 160 if (j <= n - j)
Chris@10 161 return cos00(i, j, n);
Chris@10 162 else
Chris@10 163 return cos00(i, n - j, n);
Chris@10 164 }
Chris@10 165
Chris@10 166 static trigreal unity(int i, int j, int n)
Chris@10 167 {
Chris@10 168 UNUSED(i);
Chris@10 169 UNUSED(j);
Chris@10 170 UNUSED(n);
Chris@10 171 return 1.0;
Chris@10 172 }
Chris@10 173
Chris@10 174 typedef trigreal (*trigfun)(int, int, int);
Chris@10 175
Chris@10 176 static void rarand(R *a, int n)
Chris@10 177 {
Chris@10 178 int i;
Chris@10 179
Chris@10 180 /* generate random inputs */
Chris@10 181 for (i = 0; i < n; ++i) {
Chris@10 182 a[i] = mydrand();
Chris@10 183 }
Chris@10 184 }
Chris@10 185
Chris@10 186 /* C = A + B */
Chris@10 187 static void raadd(R *c, R *a, R *b, int n)
Chris@10 188 {
Chris@10 189 int i;
Chris@10 190
Chris@10 191 for (i = 0; i < n; ++i) {
Chris@10 192 c[i] = a[i] + b[i];
Chris@10 193 }
Chris@10 194 }
Chris@10 195
Chris@10 196 /* C = A - B */
Chris@10 197 static void rasub(R *c, R *a, R *b, int n)
Chris@10 198 {
Chris@10 199 int i;
Chris@10 200
Chris@10 201 for (i = 0; i < n; ++i) {
Chris@10 202 c[i] = a[i] - b[i];
Chris@10 203 }
Chris@10 204 }
Chris@10 205
Chris@10 206 /* B = rotate left A + rotate right A */
Chris@10 207 static void rarolr(R *b, R *a, int n, int nb, int na,
Chris@10 208 r2r_kind_t k)
Chris@10 209 {
Chris@10 210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
Chris@10 211 int i, ib, ia;
Chris@10 212
Chris@10 213 for (ib = 0; ib < nb; ++ib) {
Chris@10 214 for (i = 0; i < n - 1; ++i)
Chris@10 215 for (ia = 0; ia < na; ++ia)
Chris@10 216 b[(ib * n + i) * na + ia] =
Chris@10 217 a[(ib * n + i + 1) * na + ia];
Chris@10 218
Chris@10 219 /* ugly switch to do boundary conditions for various r2r types */
Chris@10 220 switch (k) {
Chris@10 221 /* periodic boundaries */
Chris@10 222 case R2R_DHT:
Chris@10 223 case R2R_R2HC:
Chris@10 224 for (ia = 0; ia < na; ++ia) {
Chris@10 225 b[(ib * n + n - 1) * na + ia] =
Chris@10 226 a[(ib * n + 0) * na + ia];
Chris@10 227 b[(ib * n + 0) * na + ia] +=
Chris@10 228 a[(ib * n + n - 1) * na + ia];
Chris@10 229 }
Chris@10 230 break;
Chris@10 231
Chris@10 232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
Chris@10 233 if (n > 2) {
Chris@10 234 if (n % 2 == 0)
Chris@10 235 for (ia = 0; ia < na; ++ia) {
Chris@10 236 b[(ib * n + n - 1) * na + ia] = 0.0;
Chris@10 237 b[(ib * n + 0) * na + ia] +=
Chris@10 238 a[(ib * n + 1) * na + ia];
Chris@10 239 b[(ib * n + n/2) * na + ia] +=
Chris@10 240 + a[(ib * n + n/2 - 1) * na + ia]
Chris@10 241 - a[(ib * n + n/2 + 1) * na + ia];
Chris@10 242 b[(ib * n + n/2 + 1) * na + ia] +=
Chris@10 243 - a[(ib * n + n/2) * na + ia];
Chris@10 244 }
Chris@10 245 else
Chris@10 246 for (ia = 0; ia < na; ++ia) {
Chris@10 247 b[(ib * n + n - 1) * na + ia] = 0.0;
Chris@10 248 b[(ib * n + 0) * na + ia] +=
Chris@10 249 a[(ib * n + 1) * na + ia];
Chris@10 250 b[(ib * n + n/2) * na + ia] +=
Chris@10 251 + a[(ib * n + n/2) * na + ia]
Chris@10 252 - a[(ib * n + n/2 + 1) * na + ia];
Chris@10 253 b[(ib * n + n/2 + 1) * na + ia] +=
Chris@10 254 - a[(ib * n + n/2 + 1) * na + ia]
Chris@10 255 - a[(ib * n + n/2) * na + ia];
Chris@10 256 }
Chris@10 257 } else /* n <= 2 */ {
Chris@10 258 for (ia = 0; ia < na; ++ia) {
Chris@10 259 b[(ib * n + n - 1) * na + ia] =
Chris@10 260 a[(ib * n + 0) * na + ia];
Chris@10 261 b[(ib * n + 0) * na + ia] +=
Chris@10 262 a[(ib * n + n - 1) * na + ia];
Chris@10 263 }
Chris@10 264 }
Chris@10 265 break;
Chris@10 266
Chris@10 267 /* various even/odd boundary conditions */
Chris@10 268 case R2R_REDFT00:
Chris@10 269 isL1 = isR1 = 1;
Chris@10 270 goto mirrors;
Chris@10 271 case R2R_REDFT01:
Chris@10 272 isL1 = 1;
Chris@10 273 goto mirrors;
Chris@10 274 case R2R_REDFT10:
Chris@10 275 isL0 = isR0 = 1;
Chris@10 276 goto mirrors;
Chris@10 277 case R2R_REDFT11:
Chris@10 278 isL0 = 1;
Chris@10 279 isR0 = -1;
Chris@10 280 goto mirrors;
Chris@10 281 case R2R_RODFT00:
Chris@10 282 goto mirrors;
Chris@10 283 case R2R_RODFT01:
Chris@10 284 isR1 = 1;
Chris@10 285 goto mirrors;
Chris@10 286 case R2R_RODFT10:
Chris@10 287 isL0 = isR0 = -1;
Chris@10 288 goto mirrors;
Chris@10 289 case R2R_RODFT11:
Chris@10 290 isL0 = -1;
Chris@10 291 isR0 = 1;
Chris@10 292 goto mirrors;
Chris@10 293
Chris@10 294 mirrors:
Chris@10 295
Chris@10 296 for (ia = 0; ia < na; ++ia)
Chris@10 297 b[(ib * n + n - 1) * na + ia] =
Chris@10 298 isR0 * a[(ib * n + n - 1) * na + ia]
Chris@10 299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
Chris@10 300 : 0);
Chris@10 301
Chris@10 302 for (ia = 0; ia < na; ++ia)
Chris@10 303 b[(ib * n) * na + ia] +=
Chris@10 304 isL0 * a[(ib * n) * na + ia]
Chris@10 305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
Chris@10 306
Chris@10 307 }
Chris@10 308
Chris@10 309 for (i = 1; i < n; ++i)
Chris@10 310 for (ia = 0; ia < na; ++ia)
Chris@10 311 b[(ib * n + i) * na + ia] +=
Chris@10 312 a[(ib * n + i - 1) * na + ia];
Chris@10 313 }
Chris@10 314 }
Chris@10 315
Chris@10 316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
Chris@10 317 int n0, int k0, trigfun t)
Chris@10 318 {
Chris@10 319 int j, jb, ja;
Chris@10 320
Chris@10 321 for (jb = 0; jb < nb; ++jb)
Chris@10 322 for (j = 0; j < n; ++j) {
Chris@10 323 trigreal c = 2.0 * t(1, j + k0, n0);
Chris@10 324
Chris@10 325 for (ja = 0; ja < na; ++ja) {
Chris@10 326 int k = (jb * n + j) * na + ja;
Chris@10 327 b[k] = a[k] * c;
Chris@10 328 }
Chris@10 329 }
Chris@10 330 }
Chris@10 331
Chris@10 332 /* A = alpha * A (real, in place) */
Chris@10 333 static void rascale(R *a, R alpha, int n)
Chris@10 334 {
Chris@10 335 int i;
Chris@10 336
Chris@10 337 for (i = 0; i < n; ++i) {
Chris@10 338 a[i] *= alpha;
Chris@10 339 }
Chris@10 340 }
Chris@10 341
Chris@10 342 /*
Chris@10 343 * compute rdft:
Chris@10 344 */
Chris@10 345
Chris@10 346 /* copy real A into real B, using output stride of A and input stride of B */
Chris@10 347 typedef struct {
Chris@10 348 dotens2_closure k;
Chris@10 349 R *ra;
Chris@10 350 R *rb;
Chris@10 351 } cpyr_closure;
Chris@10 352
Chris@10 353 static void cpyr0(dotens2_closure *k_,
Chris@10 354 int indxa, int ondxa, int indxb, int ondxb)
Chris@10 355 {
Chris@10 356 cpyr_closure *k = (cpyr_closure *)k_;
Chris@10 357 k->rb[indxb] = k->ra[ondxa];
Chris@10 358 UNUSED(indxa); UNUSED(ondxb);
Chris@10 359 }
Chris@10 360
Chris@10 361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
Chris@10 362 {
Chris@10 363 cpyr_closure k;
Chris@10 364 k.k.apply = cpyr0;
Chris@10 365 k.ra = ra; k.rb = rb;
Chris@10 366 bench_dotens2(sza, szb, &k.k);
Chris@10 367 }
Chris@10 368
Chris@10 369 static void dofft(info *nfo, R *in, R *out)
Chris@10 370 {
Chris@10 371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
Chris@10 372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
Chris@10 373 doit(1, nfo->p);
Chris@10 374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
Chris@10 375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
Chris@10 376 }
Chris@10 377
Chris@10 378 static double racmp(R *a, R *b, int n, const char *test, double tol)
Chris@10 379 {
Chris@10 380 double d = raerror(a, b, n);
Chris@10 381 if (d > tol) {
Chris@10 382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
Chris@10 383 {
Chris@10 384 int i, N;
Chris@10 385 N = n > 300 && verbose <= 2 ? 300 : n;
Chris@10 386 for (i = 0; i < N; ++i)
Chris@10 387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
Chris@10 388 (double) a[i],
Chris@10 389 (double) b[i]);
Chris@10 390 }
Chris@10 391 bench_exit(EXIT_FAILURE);
Chris@10 392 }
Chris@10 393 return d;
Chris@10 394 }
Chris@10 395
Chris@10 396 /***********************************************************************/
Chris@10 397
Chris@10 398 typedef struct {
Chris@10 399 int n; /* physical size */
Chris@10 400 int n0; /* "logical" transform size */
Chris@10 401 int i0, k0; /* shifts of input/output */
Chris@10 402 trigfun ti, ts; /* impulse/shift trig functions */
Chris@10 403 } dim_stuff;
Chris@10 404
Chris@10 405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
Chris@10 406 R *A, int N)
Chris@10 407 {
Chris@10 408 if (rnk == 0)
Chris@10 409 A[0] = impulse_amp;
Chris@10 410 else {
Chris@10 411 int i;
Chris@10 412 N /= d->n;
Chris@10 413 for (i = 0; i < d->n; ++i) {
Chris@10 414 impulse_response(rnk - 1, d + 1,
Chris@10 415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
Chris@10 416 A + i * N, N);
Chris@10 417 }
Chris@10 418 }
Chris@10 419 }
Chris@10 420
Chris@10 421 /***************************************************************************/
Chris@10 422
Chris@10 423 /*
Chris@10 424 * Implementation of the FFT tester described in
Chris@10 425 *
Chris@10 426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
Chris@10 427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
Chris@10 428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
Chris@10 429 * Nevada, 29 May--1 June 1995.
Chris@10 430 *
Chris@10 431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
Chris@10 432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
Chris@10 433 */
Chris@10 434
Chris@10 435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
Chris@10 436 R *outB, R *outC, R *tmp, int rounds, double tol)
Chris@10 437 {
Chris@10 438 double e = 0.0;
Chris@10 439 int j;
Chris@10 440
Chris@10 441 for (j = 0; j < rounds; ++j) {
Chris@10 442 R alpha, beta;
Chris@10 443 alpha = mydrand();
Chris@10 444 beta = mydrand();
Chris@10 445 rarand(inA, n);
Chris@10 446 rarand(inB, n);
Chris@10 447 dofft(nfo, inA, outA);
Chris@10 448 dofft(nfo, inB, outB);
Chris@10 449
Chris@10 450 rascale(outA, alpha, n);
Chris@10 451 rascale(outB, beta, n);
Chris@10 452 raadd(tmp, outA, outB, n);
Chris@10 453 rascale(inA, alpha, n);
Chris@10 454 rascale(inB, beta, n);
Chris@10 455 raadd(inC, inA, inB, n);
Chris@10 456 dofft(nfo, inC, outC);
Chris@10 457
Chris@10 458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
Chris@10 459 }
Chris@10 460 return e;
Chris@10 461 }
Chris@10 462
Chris@10 463 static double rimpulse(dim_stuff *d, R impulse_amp,
Chris@10 464 int n, int vecn, info *nfo,
Chris@10 465 R *inA, R *inB, R *inC,
Chris@10 466 R *outA, R *outB, R *outC,
Chris@10 467 R *tmp, int rounds, double tol)
Chris@10 468 {
Chris@10 469 double e = 0.0;
Chris@10 470 int N = n * vecn;
Chris@10 471 int i;
Chris@10 472 int j;
Chris@10 473
Chris@10 474 /* test 2: check that the unit impulse is transformed properly */
Chris@10 475
Chris@10 476 for (i = 0; i < N; ++i) {
Chris@10 477 /* pls */
Chris@10 478 inA[i] = 0.0;
Chris@10 479 }
Chris@10 480 for (i = 0; i < vecn; ++i) {
Chris@10 481 inA[i * n] = (i+1) / (double)(vecn+1);
Chris@10 482
Chris@10 483 /* transform of the pls */
Chris@10 484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
Chris@10 485 outA + i * n, n);
Chris@10 486 }
Chris@10 487
Chris@10 488 dofft(nfo, inA, tmp);
Chris@10 489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
Chris@10 490
Chris@10 491 for (j = 0; j < rounds; ++j) {
Chris@10 492 rarand(inB, N);
Chris@10 493 rasub(inC, inA, inB, N);
Chris@10 494 dofft(nfo, inB, outB);
Chris@10 495 dofft(nfo, inC, outC);
Chris@10 496 raadd(tmp, outB, outC, N);
Chris@10 497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
Chris@10 498 }
Chris@10 499 return e;
Chris@10 500 }
Chris@10 501
Chris@10 502 static double t_shift(int n, int vecn, info *nfo,
Chris@10 503 R *inA, R *inB, R *outA, R *outB, R *tmp,
Chris@10 504 int rounds, double tol,
Chris@10 505 dim_stuff *d)
Chris@10 506 {
Chris@10 507 double e = 0.0;
Chris@10 508 int nb, na, dim, N = n * vecn;
Chris@10 509 int i, j;
Chris@10 510 bench_tensor *sz = nfo->probsz;
Chris@10 511
Chris@10 512 /* test 3: check the time-shift property */
Chris@10 513 /* the paper performs more tests, but this code should be fine too */
Chris@10 514
Chris@10 515 nb = 1;
Chris@10 516 na = n;
Chris@10 517
Chris@10 518 /* check shifts across all SZ dimensions */
Chris@10 519 for (dim = 0; dim < sz->rnk; ++dim) {
Chris@10 520 int ncur = sz->dims[dim].n;
Chris@10 521
Chris@10 522 na /= ncur;
Chris@10 523
Chris@10 524 for (j = 0; j < rounds; ++j) {
Chris@10 525 rarand(inA, N);
Chris@10 526
Chris@10 527 for (i = 0; i < vecn; ++i) {
Chris@10 528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
Chris@10 529 nfo->p->k[dim]);
Chris@10 530 }
Chris@10 531 dofft(nfo, inA, outA);
Chris@10 532 dofft(nfo, inB, outB);
Chris@10 533 for (i = 0; i < vecn; ++i)
Chris@10 534 raphase_shift(tmp + i * n, outA + i * n, ncur,
Chris@10 535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
Chris@10 536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
Chris@10 537 }
Chris@10 538
Chris@10 539 nb *= ncur;
Chris@10 540 }
Chris@10 541 return e;
Chris@10 542 }
Chris@10 543
Chris@10 544 /***********************************************************************/
Chris@10 545
Chris@10 546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
Chris@10 547 {
Chris@10 548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
Chris@10 549 info nfo;
Chris@10 550 int n, vecn, N;
Chris@10 551 double impulse_amp = 1.0;
Chris@10 552 dim_stuff *d;
Chris@10 553 int i;
Chris@10 554
Chris@10 555 if (rounds == 0)
Chris@10 556 rounds = 20; /* default value */
Chris@10 557
Chris@10 558 n = tensor_sz(p->sz);
Chris@10 559 vecn = tensor_sz(p->vecsz);
Chris@10 560 N = n * vecn;
Chris@10 561
Chris@10 562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
Chris@10 563 for (i = 0; i < p->sz->rnk; ++i) {
Chris@10 564 int n0, i0, k0;
Chris@10 565 trigfun ti, ts;
Chris@10 566
Chris@10 567 d[i].n = n0 = p->sz->dims[i].n;
Chris@10 568 if (p->k[i] > R2R_DHT)
Chris@10 569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
Chris@10 570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
Chris@10 571
Chris@10 572 switch (p->k[i]) {
Chris@10 573 case R2R_R2HC:
Chris@10 574 i0 = k0 = 0;
Chris@10 575 ti = realhalf;
Chris@10 576 ts = coshalf;
Chris@10 577 break;
Chris@10 578 case R2R_DHT:
Chris@10 579 i0 = k0 = 0;
Chris@10 580 ti = unity;
Chris@10 581 ts = cos00;
Chris@10 582 break;
Chris@10 583 case R2R_HC2R:
Chris@10 584 i0 = k0 = 0;
Chris@10 585 ti = unity;
Chris@10 586 ts = cos00;
Chris@10 587 break;
Chris@10 588 case R2R_REDFT00:
Chris@10 589 i0 = k0 = 0;
Chris@10 590 ti = ts = cos00;
Chris@10 591 break;
Chris@10 592 case R2R_REDFT01:
Chris@10 593 i0 = k0 = 0;
Chris@10 594 ti = ts = cos01;
Chris@10 595 break;
Chris@10 596 case R2R_REDFT10:
Chris@10 597 i0 = k0 = 0;
Chris@10 598 ti = cos10; impulse_amp *= 2.0;
Chris@10 599 ts = cos00;
Chris@10 600 break;
Chris@10 601 case R2R_REDFT11:
Chris@10 602 i0 = k0 = 0;
Chris@10 603 ti = cos11; impulse_amp *= 2.0;
Chris@10 604 ts = cos01;
Chris@10 605 break;
Chris@10 606 case R2R_RODFT00:
Chris@10 607 i0 = k0 = 1;
Chris@10 608 ti = sin00; impulse_amp *= 2.0;
Chris@10 609 ts = cos00;
Chris@10 610 break;
Chris@10 611 case R2R_RODFT01:
Chris@10 612 i0 = 1; k0 = 0;
Chris@10 613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
Chris@10 614 ts = cos01;
Chris@10 615 break;
Chris@10 616 case R2R_RODFT10:
Chris@10 617 i0 = 0; k0 = 1;
Chris@10 618 ti = sin10; impulse_amp *= 2.0;
Chris@10 619 ts = cos00;
Chris@10 620 break;
Chris@10 621 case R2R_RODFT11:
Chris@10 622 i0 = k0 = 0;
Chris@10 623 ti = sin11; impulse_amp *= 2.0;
Chris@10 624 ts = cos01;
Chris@10 625 break;
Chris@10 626 default:
Chris@10 627 BENCH_ASSERT(0);
Chris@10 628 return;
Chris@10 629 }
Chris@10 630
Chris@10 631 d[i].n0 = n0;
Chris@10 632 d[i].i0 = i0;
Chris@10 633 d[i].k0 = k0;
Chris@10 634 d[i].ti = ti;
Chris@10 635 d[i].ts = ts;
Chris@10 636 }
Chris@10 637
Chris@10 638
Chris@10 639 inA = (R *) bench_malloc(N * sizeof(R));
Chris@10 640 inB = (R *) bench_malloc(N * sizeof(R));
Chris@10 641 inC = (R *) bench_malloc(N * sizeof(R));
Chris@10 642 outA = (R *) bench_malloc(N * sizeof(R));
Chris@10 643 outB = (R *) bench_malloc(N * sizeof(R));
Chris@10 644 outC = (R *) bench_malloc(N * sizeof(R));
Chris@10 645 tmp = (R *) bench_malloc(N * sizeof(R));
Chris@10 646
Chris@10 647 nfo.p = p;
Chris@10 648 nfo.probsz = p->sz;
Chris@10 649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
Chris@10 650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
Chris@10 651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
Chris@10 652
Chris@10 653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
Chris@10 654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
Chris@10 655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
Chris@10 656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
Chris@10 657 rounds, tol, d);
Chris@10 658
Chris@10 659 /* grr, verify-lib.c:preserves_input() only works for complex */
Chris@10 660 if (!p->in_place && !p->destroy_input) {
Chris@10 661 bench_tensor *totalsz_swap, *pckdsz_swap;
Chris@10 662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
Chris@10 663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
Chris@10 664
Chris@10 665 for (i = 0; i < rounds; ++i) {
Chris@10 666 rarand(inA, N);
Chris@10 667 dofft(&nfo, inA, outB);
Chris@10 668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
Chris@10 669 racmp(inB, inA, N, "preserves_input", 0.0);
Chris@10 670 }
Chris@10 671
Chris@10 672 tensor_destroy(totalsz_swap);
Chris@10 673 tensor_destroy(pckdsz_swap);
Chris@10 674 }
Chris@10 675
Chris@10 676 tensor_destroy(nfo.totalsz);
Chris@10 677 tensor_destroy(nfo.pckdsz);
Chris@10 678 tensor_destroy(nfo.pckdvecsz);
Chris@10 679 bench_free(tmp);
Chris@10 680 bench_free(outC);
Chris@10 681 bench_free(outB);
Chris@10 682 bench_free(outA);
Chris@10 683 bench_free(inC);
Chris@10 684 bench_free(inB);
Chris@10 685 bench_free(inA);
Chris@10 686 bench_free(d);
Chris@10 687 }
Chris@10 688
Chris@10 689
Chris@10 690 typedef struct {
Chris@10 691 dofft_closure k;
Chris@10 692 bench_problem *p;
Chris@10 693 int n0;
Chris@10 694 } dofft_r2r_closure;
Chris@10 695
Chris@10 696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
Chris@10 697 {
Chris@10 698 int i;
Chris@10 699 for (i = 0; i < n; ++i)
Chris@10 700 out[i * os] = in[i * is] * scale;
Chris@10 701 }
Chris@10 702
Chris@10 703 static void mke00(C *a, int n, int c)
Chris@10 704 {
Chris@10 705 int i;
Chris@10 706 for (i = 1; i + i < n; ++i)
Chris@10 707 a[n - i][c] = a[i][c];
Chris@10 708 }
Chris@10 709
Chris@10 710 static void mkre00(C *a, int n)
Chris@10 711 {
Chris@10 712 mkreal(a, n);
Chris@10 713 mke00(a, n, 0);
Chris@10 714 }
Chris@10 715
Chris@10 716 static void mkimag(C *a, int n)
Chris@10 717 {
Chris@10 718 int i;
Chris@10 719 for (i = 0; i < n; ++i)
Chris@10 720 c_re(a[i]) = 0.0;
Chris@10 721 }
Chris@10 722
Chris@10 723 static void mko00(C *a, int n, int c)
Chris@10 724 {
Chris@10 725 int i;
Chris@10 726 a[0][c] = 0.0;
Chris@10 727 for (i = 1; i + i < n; ++i)
Chris@10 728 a[n - i][c] = -a[i][c];
Chris@10 729 if (i + i == n)
Chris@10 730 a[i][c] = 0.0;
Chris@10 731 }
Chris@10 732
Chris@10 733 static void mkro00(C *a, int n)
Chris@10 734 {
Chris@10 735 mkreal(a, n);
Chris@10 736 mko00(a, n, 0);
Chris@10 737 }
Chris@10 738
Chris@10 739 static void mkio00(C *a, int n)
Chris@10 740 {
Chris@10 741 mkimag(a, n);
Chris@10 742 mko00(a, n, 1);
Chris@10 743 }
Chris@10 744
Chris@10 745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
Chris@10 746 {
Chris@10 747 R a0;
Chris@10 748 a0 = c_re(a[0]);
Chris@10 749 mko00(a, n/2, 0);
Chris@10 750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
Chris@10 751 mkre00(a, n);
Chris@10 752 }
Chris@10 753
Chris@10 754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
Chris@10 755 {
Chris@10 756 c_re(a[0]) = c_im(a[0]) = 0.0;
Chris@10 757 mkre00(a, n/2);
Chris@10 758 mkro00(a, n);
Chris@10 759 }
Chris@10 760
Chris@10 761 static void mkoddonly(C *a, int n)
Chris@10 762 {
Chris@10 763 int i;
Chris@10 764 for (i = 0; i < n; i += 2)
Chris@10 765 c_re(a[i]) = c_im(a[i]) = 0.0;
Chris@10 766 }
Chris@10 767
Chris@10 768 static void mkre10(C *a, int n)
Chris@10 769 {
Chris@10 770 mkoddonly(a, n);
Chris@10 771 mkre00(a, n);
Chris@10 772 }
Chris@10 773
Chris@10 774 static void mkio10(C *a, int n)
Chris@10 775 {
Chris@10 776 mkoddonly(a, n);
Chris@10 777 mkio00(a, n);
Chris@10 778 }
Chris@10 779
Chris@10 780 static void mkre11(C *a, int n)
Chris@10 781 {
Chris@10 782 mkoddonly(a, n);
Chris@10 783 mko00(a, n/2, 0);
Chris@10 784 mkre00(a, n);
Chris@10 785 }
Chris@10 786
Chris@10 787 static void mkro11(C *a, int n)
Chris@10 788 {
Chris@10 789 mkoddonly(a, n);
Chris@10 790 mkre00(a, n/2);
Chris@10 791 mkro00(a, n);
Chris@10 792 }
Chris@10 793
Chris@10 794 static void mkio11(C *a, int n)
Chris@10 795 {
Chris@10 796 mkoddonly(a, n);
Chris@10 797 mke00(a, n/2, 1);
Chris@10 798 mkio00(a, n);
Chris@10 799 }
Chris@10 800
Chris@10 801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
Chris@10 802 {
Chris@10 803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
Chris@10 804 bench_problem *p = k->p;
Chris@10 805 bench_real *ri, *ro;
Chris@10 806 int n, is, os;
Chris@10 807
Chris@10 808 n = p->sz->dims[0].n;
Chris@10 809 is = p->sz->dims[0].is;
Chris@10 810 os = p->sz->dims[0].os;
Chris@10 811
Chris@10 812 ri = (bench_real *) p->in;
Chris@10 813 ro = (bench_real *) p->out;
Chris@10 814
Chris@10 815 switch (p->k[0]) {
Chris@10 816 case R2R_R2HC:
Chris@10 817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
Chris@10 818 break;
Chris@10 819 case R2R_HC2R:
Chris@10 820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
Chris@10 821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
Chris@10 822 break;
Chris@10 823 case R2R_REDFT00:
Chris@10 824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
Chris@10 825 break;
Chris@10 826 case R2R_RODFT00:
Chris@10 827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
Chris@10 828 break;
Chris@10 829 case R2R_REDFT01:
Chris@10 830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
Chris@10 831 break;
Chris@10 832 case R2R_REDFT10:
Chris@10 833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
Chris@10 834 break;
Chris@10 835 case R2R_RODFT01:
Chris@10 836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
Chris@10 837 break;
Chris@10 838 case R2R_RODFT10:
Chris@10 839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
Chris@10 840 break;
Chris@10 841 case R2R_REDFT11:
Chris@10 842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
Chris@10 843 break;
Chris@10 844 case R2R_RODFT11:
Chris@10 845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
Chris@10 846 break;
Chris@10 847 default:
Chris@10 848 BENCH_ASSERT(0); /* not yet implemented */
Chris@10 849 }
Chris@10 850
Chris@10 851 after_problem_rcopy_from(p, ri);
Chris@10 852 doit(1, p);
Chris@10 853 after_problem_rcopy_to(p, ro);
Chris@10 854
Chris@10 855 switch (p->k[0]) {
Chris@10 856 case R2R_R2HC:
Chris@10 857 if (k->k.recopy_input)
Chris@10 858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
Chris@10 859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
Chris@10 860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
Chris@10 861 c_im(out[0]) = 0.0;
Chris@10 862 if (n % 2 == 0)
Chris@10 863 c_im(out[n/2]) = 0.0;
Chris@10 864 mkhermitian1(out, n);
Chris@10 865 break;
Chris@10 866 case R2R_HC2R:
Chris@10 867 if (k->k.recopy_input) {
Chris@10 868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
Chris@10 869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
Chris@10 870 }
Chris@10 871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
Chris@10 872 mkreal(out, n);
Chris@10 873 break;
Chris@10 874 case R2R_REDFT00:
Chris@10 875 if (k->k.recopy_input)
Chris@10 876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
Chris@10 877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
Chris@10 878 mkre00(out, k->n0);
Chris@10 879 break;
Chris@10 880 case R2R_RODFT00:
Chris@10 881 if (k->k.recopy_input)
Chris@10 882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
Chris@10 883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
Chris@10 884 mkio00(out, k->n0);
Chris@10 885 break;
Chris@10 886 case R2R_REDFT01:
Chris@10 887 if (k->k.recopy_input)
Chris@10 888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
Chris@10 889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
Chris@10 890 mkre10(out, k->n0);
Chris@10 891 break;
Chris@10 892 case R2R_REDFT10:
Chris@10 893 if (k->k.recopy_input)
Chris@10 894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
Chris@10 895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
Chris@10 896 mkre01(out, k->n0);
Chris@10 897 break;
Chris@10 898 case R2R_RODFT01:
Chris@10 899 if (k->k.recopy_input)
Chris@10 900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
Chris@10 901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
Chris@10 902 mkio10(out, k->n0);
Chris@10 903 break;
Chris@10 904 case R2R_RODFT10:
Chris@10 905 if (k->k.recopy_input)
Chris@10 906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
Chris@10 907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
Chris@10 908 mkro01(out, k->n0);
Chris@10 909 break;
Chris@10 910 case R2R_REDFT11:
Chris@10 911 if (k->k.recopy_input)
Chris@10 912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
Chris@10 913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
Chris@10 914 mkre11(out, k->n0);
Chris@10 915 break;
Chris@10 916 case R2R_RODFT11:
Chris@10 917 if (k->k.recopy_input)
Chris@10 918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
Chris@10 919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
Chris@10 920 mkio11(out, k->n0);
Chris@10 921 break;
Chris@10 922 default:
Chris@10 923 BENCH_ASSERT(0); /* not yet implemented */
Chris@10 924 }
Chris@10 925 }
Chris@10 926
Chris@10 927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
Chris@10 928 double t[6])
Chris@10 929 {
Chris@10 930 dofft_r2r_closure k;
Chris@10 931 int n, n0 = 1;
Chris@10 932 C *a, *b;
Chris@10 933 aconstrain constrain = 0;
Chris@10 934
Chris@10 935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
Chris@10 936 BENCH_ASSERT(p->sz->rnk == 1);
Chris@10 937 BENCH_ASSERT(p->vecsz->rnk == 0);
Chris@10 938
Chris@10 939 k.k.apply = r2r_apply;
Chris@10 940 k.k.recopy_input = 0;
Chris@10 941 k.p = p;
Chris@10 942 n = tensor_sz(p->sz);
Chris@10 943
Chris@10 944 switch (p->k[0]) {
Chris@10 945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
Chris@10 946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
Chris@10 947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
Chris@10 948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
Chris@10 949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
Chris@10 950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
Chris@10 951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
Chris@10 952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
Chris@10 953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
Chris@10 954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
Chris@10 955 default: BENCH_ASSERT(0); /* not yet implemented */
Chris@10 956 }
Chris@10 957 k.n0 = n0;
Chris@10 958
Chris@10 959 a = (C *) bench_malloc(n0 * sizeof(C));
Chris@10 960 b = (C *) bench_malloc(n0 * sizeof(C));
Chris@10 961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
Chris@10 962 bench_free(b);
Chris@10 963 bench_free(a);
Chris@10 964 }